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Abstract

This is a report on the Eel programming language, its syntax, semantics and
intended use. The language has been developed as a tool to allow programs to adapt
using symbolic learning techniques. Eel is a logic language and has a declarative
interpretation of user and process communication. This is achieved by extending
the traditional deductive proof procedure with abduction of a set of communication
events.

Eel also allows initiation of concurrent evaluation of subqueries and has a
declarative interpretation of such initiations.
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1 Introduction

Adaptive agents with a declarative representation of the rules that guide their behaviour
is an important extension to today‘s adaptive agents. It is currently common for adap-
tive agents to use non-declarative methods of adaption, like artificial neural networks.

An agent with a declarative representation of its rules of behaviour can use sym-
bolic learning methods like Inductive Logic Programming (ILP) [9], to synthesise more
such rules. Such rules, in the form of programs can be synthesised from examples pro-
vided by interaction with other external processes.

Another advantage of having rules with a declarative representation is that this rules
can be easily understood by humans. This gives a better possibility for guided adaption
and allows an agent’s user to better understand its behaviour.

A declarative approach to program synthesis and agent adaption demands a declar-
ative interpretation of process interaction.

The Eel language provides a declarative framework which allow agents to adapt
using ILP techniqes. The main idea of Eel is to handle all interaction between pro-
cesses and users with the same abstraction, that of communication events. In addition,
Eel extends the traditional, deductive Prolog proof procedure with abduction of terms
formed using a set of reserved predicates.

The idea of making process communication in Prolog explicit was introduced in
Delta Prolog [11]. The idea of using events to synchronize concurrent processes and
perform communication was also introduced in the Tempo language [4], where they
are also used to reason about a systems safety properties.

The IFF proof procedure [3] expanded the classical deductive proof proocedure
with abduction. The Openlog language [1] was built on that proof procedure.

2 The Eel Syntax

2.1 Reserved Predicates

The syntax of the Eel language is based on the Prolog syntax [7], but reserves two pred-
icates, event(Event id,Message and precedes(Event id1,Event id2) for user and process
communication.

� The event/2 predicate refers to a communication event and if that event has not
yet taken place, the evaluation causes the synchronisation of the involved pro-
cesses and the unification of the involved messages.

� The precedes/2 predicate refers to two events and restricts the second to take
place only after the first one has taken place. The event that is specified by the
event identifier in the first argument of the predicate is called the constraining
event. The event that is refered to by the identifier in the second argument of
the predicate is called the constrained event. A literal containing the precedes
predicate is called a precedence constraint. If the second event has not yet taken
place when a litral containing the precedes predicate is evaluated, the constraint
is recorded and respected when evaluating future events.
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2.2 Reserved Terms

Eel also reserves a set of terms for description of channels in the event identifiers.

� An event identifier has the form of a tuple (Channel id,Message no). The chan-
nel identifier specifies what channel the communication is to take place on and
the message number is used to differentiate between and order different messages
on the same channel. The message has the form of a clause.

The channel identifiers std in, std out and (i,N), where N is any integer, are reserved
for user input, user output and initiation of concurrent evaluation respectively.

Two messages with the same channel identifier are also constrained as to when they
can take place. The event with the lower message number must take place first. Thus,
the message numbering has the effect of explicitly constraining the event precedence,
in exactly the same way as the precedes predicate and is similiaily included in the set
of precedence constraints.

2.3 Ordering of Literals

The result of the operational semantics of the reserved predicates is that the operational
semantics of Eel is not complete. When a communication event involving an external
process or user has been executed it is not possible to undo it. This gives the order in
which literals appear in the code an influence on the result of the evaluation. Below
is an example of how two equivalent logic sentences will give different answers to a
query. The intended functionality is to prompt a user for his/her name with an output
event and then to read that name with an input event.

interact1:-
event((std_out,1),’Please enter your name: ’),
event((std_in,1),Name).

interact2:-
event((std_in,1),Name),
event((std_out,1),’Please enter your name: ’).

The interact1 clause will prompt the user before accepting an answer, while the
interact2 clause will read a name from the user before writing the prompt.

The ordering of the event literals influences the outcome of the evaluation together
with the precedence constraints. The precedence constraints can only be used to ex-
clude undesired solutions. It can not be used to guarantee the desired ones. This is
why they are explicit declarations of the safety properties of the program. They are not
specifications of the progress properties.

Another program that behaves like event1 and one that will fail are given below in
interact3 and interact4 respectively.

interact3:-
precedes((std_out,1),(std_in,1)),
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event((std_in,1),Name),
event((std_out,1),’Please enter your name: ’).

interact4:-
event((std_in,1),Name),
precedes((std_out,1),(std_in,1)),
event((std_out,1),’Please enter your name: ’).

It may seem cumbersome to explicitly specify the precedence constraint when the
two clauses interact1 and interact3 will give exactly the same answers and interact4
will fail. This seems to imply that the explicit precedence constraints do not add any
functionality to the language and could with good reason be made implicit in the or-
dering of the literals.

The counter example below shows a program ensuring mutual exclusion to a re-
source accessible throung two channels, utilising the functionality of explicit prece-
dence constraints.

mutex((E1_ch,E1_no),(E2_ch,E2_no)):-

event((E1_ch,E1_no),reserve),
precedes((E1_ch,E1_no+1),(E2_ch,E2_no)),
mutex((E1_ch,E1_no+1),(E2_ch,E2_no));

event((E2_ch,E2_no),reserve),
precedes((E2_ch,E2_no+1),(E1_ch,E1_no)),
mutex((E1_ch,E1_no),(E2_ch,E2_no+1));

event((E1_ch,E1_no),release),
mutex((E1_ch,E1_no+1),(E2_ch,E2_no));

event((E2_ch,E2_no),release),
mutex((E1_ch,E1_no),(E2_ch,E2_no+1)).

Another important reason to keep the precedence constraints explicit is that in Eel
the state of the program evaluation can be found by analysing previous events. The
implementation of the holds at clause from the event calculus [6] given below shows
how the precedes predicate is essential such analysis.

holds_at(Relation,Last_event):-
initiates(Previous_event,Relation),
precedes(Previous_event,Last_event),
Event,
not(broken(Relation,Previous_event,Last_event)).

The examples above assume a computation rule that resolves on the leftmost literal,
like in Prolog and also in Eel. This means that an event that is to precede another
event must have its leftmost appearance placed syntactically to the left of the leftmost
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appearance of the second event and that only precedence constraints placed to the left
of the event they constrain will influence the ordering in which the events take place.

3 The Eel Operational Semantics

Like Prolog, the operational semantics of all the unreserved predicates in Eel is the
process semantics [7]. The reserved predicates have a more complex semantics.

3.1 Eel Process Records

Eel processes keep four records. These records are the external communication chan-
nels Ch, the event history H, the current constraints Co, the events delayed awaiting
the satisfaction of constraints HC, and the processes awaiting communication with the
process in question P.

1. Ch records what channels are external to that process. The collection of all these
records from the existing processes reflects the hardware stucture the system is
runing on. This structure must be declared before the initial query. All processes
have the external communication channels std in and std out.

All channels to processes initiated using the (i,N) event identifier are shared be-
tween the initiating and the initiated processes only. These channels are added
to the external channel record at initiation time. Processes initiated in this way
run on the same processor as the initiating process.

2. H records what events have taken place and the order in which they took place.

3. Co records unsatisfied constraints which concern events that have not yet taken
place. As constraints are satisfied, they are removed from this record.

4. HC records what events are delayed waiting for a constraint to be satisfied. When
the constraints are satisfied the events recorded here immediately take place. If
this record is not empty by the end of the evaluation, the evaluation fails.

5. P records what other processes are awaiting communication with the process.
A process is added to this record in another process when it tries to evaluate an
event on a communication channel that it shares a with that other process.

All these records are kept so that it is possible to construct a set of events that
together with the program satisfies the initial query.

3.2 Reserved Predicate Evaluation

The event(Id,Message) predicate The following happens when a literal containing
the event predicate is evaluated.
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1. It is first checked with the history of events H, if that event has alread taken
place. If that is the case, the evaluation of the literal succeeds or fails according
to the unifyability of the recorded message and the message specified in the
literal being evaluated.

2. If the event has not yet taken place, it is checked whether there are currently any
unsatisfied constraints concerning that event in Co. If there is then that event is
added to the record of halted events awaiting the satisfaction of a constraint HC
and the evaluation is delayed.

3. If there are no unsatisfied constraints concerning the event, the redcord of exter-
nal channels Ch, is checked to see if the the event is an external event, that is, the
event takes place on a channel that is shared with another process. If the event
is not an external event, it immediately succeeds and is added to the record of
events that have taken place.

4. If the event is an external event, the record of waiting processes P, is checked to
see if all the other involved processes are ready. The user input and user output
processes are registred as always ready. If they are not ready the disjunct in
which the literal appears is suspended and the process is entered as a waiting
process on all the other processes’ records of waiting processes.

5. If all the involved processes are ready, the different event messages are unified.
If this unification fails then the evaluation of this event fails in all the processes
involved.

When the evaluation of an event succeds the following happens.

1. The event is recorded in all the processes’ records of events that have taken place,
H with the unified event message.

2. All the processes recorded as waiting for the succeedded event in P are removed.

3. The constraints on the record of not satisfied constraints Co that have the suc-
ceeded event as the constraining event are removed.

4. All the events on the record of events delayed awaiting the satisfaction of a con-
straint HC that are waiting for the satisfaction of constraints that have the suc-
ceeded event as the constraining event are evaluated.

When the evaluation of a literal containing the event predicate fails, the evaluation
of the Eel program fails.

The precedes(Id1,Id2) predicate When a literal that contains the precedes predicate
is evaluated the following happens.

1. It is first checked with the history of events H, if the constrained and the con-
straining event has already taken place.
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2. If the constrained event has taken place but the constraining event hasn’t, the
evaluation fails.

3. If both the constrained and the constraining event have taken place, it is checked
with the event history H if the constraint is satisfied and the evaluation succeeds
or fails according to it being satisfied or not.

4. If the constrained event has not taken place and the constraining event has, the
evaluation succeedes.

5. If none of the events have taken place, the constraint is recorded as a not satisfied
constraint on an event that has not yet taken place on Co and the evaluation
succeeds.

3.3 An Alternative Semantics for Eel

It would be possible to change the operational semantics of Eel so that the clause inter-
act4 given above in Section 2.3 would succeed, but this would mean restricting some
of the meta level programming possibilities that make Prolog so powerful. In particular
it would not be possible to use an argument from a literal as a new literal in the way
demonstrated by the meta demo program given below.

meta_demo:-
event(std_out,’Please enter mode [true/false]: ’),
event(std_in,Mode),
possible(precedes((std_in,1),(std_out,1)).

possible(true,Constraint):-
Constraint.

possible(false,_).

It is impossible to tell in advance in what order the events should take place, and
when the events have been executed, the constraint is already violated. It is considered
most important to preserve the interactive facilities in the Eel language, so the rule that
only constraints that are placed to the left of the events they constrain can influence the
event ordering, is left standing.

4 The Eel Declarative Semantics

As in classic Prolog there is a program P, which is a set of sentences in first order
predicate logic in the form of horn clauses. Execution is initiated by a query q, and the
declarative semantics of the program execution is that all the bindings,

�
which make

the program imply the query, are found for variables in the query.
The main difference introduced with events is that a set of communication events

(E,R) is constructed, with E being a set of event clauses and R being a set of precedence
constraints. The partial order introduced by R is the temporal precedence introduced
by the time the individual events take place. The declarative semantics for the program
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P and the query q is that, a set of events, ��������� , is constructed in addition to the classic
variable bindings

�
, for the query q. The set of events, (E,R) together with the variable

binding
�

and the program P implies the query, q.

�
	����������� �

4.1 Concurrent Evaluation

When concurrent evaluation is initiated, the initiation takes the form of a communi-
cation event with a query as its value. In the initial query, it is possible to represent
several processes which can participate in such communication events.

It is also possible to spawn new processes through the use of reserved channel
identifiers. The set of channel identifiers (i,N), where N is any integer has been reserved
for spawning new processes. The initial query implicitly contains a representtion of a
set of processes that await communication on these channels.

The explicit representation of one of the processes implicit in the query is given
below.

process(Id):-
event(Id,Query),
Query.

5 Proving Properties of Eel Programs

The safety properties of an Eel program are explicitly stated in its constraints on exter-
nal events. For a given set of external events the evaluation can be proved to never reach
certain states. The evaluation can be proved to never reach certain states in general by
doing s aimmilar proof for an exhaustive set of external events.

This technique is based on the work done on explicit safety constraints in the
Tempo language [4].

6 Combining Eel Programs

Two disjuctive subsections of an Eel program can contain references to different sets of
internal events. If a unique event is refered to in both of the two subparts, a particular
phenomena occurs. If the two subparts are evaluated concurrently this event will cause
synchronisation and communication. If they are evaluated sequentially the first event
automatically succeed and later evaluations of that event will refere to the recorded
event.

In both cases the event evaluation is backtrackable and the event evaluation will not
lead to incompleteness.

8



7 The Eel Deductive/Abductive Proof Procedure

The Eel operational semantics can be described by a proof procedure with both de-
ductive and also some particular abductive inference rules. The deductive inference
rules given in Equation 1 and Equation 2 are the same as for Prolog but with the added
symbol D describing the set of abduced literals. T is the theory on which the proof
procedure operates.

����� ����� �����	�
������� (1)

����� ����� ���������� ���� � ��� (2)

Combining reasoning with defined and undefined predicates in the same proof pro-
cedure has been the focus of abductive logic programming. The IFF proof procedure
[3] defines a program as a tuple ¡T, IC, Ab¿. T is a set of definitions of predicates in
iff form rather than the classical if form of Prolog. IC is a set of integrity constraints
and Ab is a set of undefined but abducible predicate symbols.

Given an abductive logic program, an answer is a pair � � ��� � , where D is a set od
ground abduced atoms and � is a substitution for the variables in a query Q. The two
following relations hold for abductive programs.

�
��� �"!�#%$ � � � � �  �'& (*) �

�
��� �"!�#%$ � � � � �  �'& (,+-�

Comp(D) is the completion of D in iff form and CET is the CLark Equality Theory.
The IFF proof procedure is both sound and complete.

The Eel language is described below as an abductive program with only the event
predicates and the precedes predicate as abducables.

� T = P
� Ab = � event/1, event/2, precedes/2 �
� IC =

–
+/.102(4365736	�3 �98;:�<-�57	 � +/.10 �>=@?BA 0 � � $C
D��EB��./� ? � +-.10 � +-.9F �G� �<9�H57	 � +/.9F �>=@?�A F � ,

– I��98;? � � $1
���EB��.-� ? � +/.10 � +/.9F � � $1
���EB��.-� ? � +/.9F � +/.10 �
The first implication in the integrity constraints says that all events other than the

initial one must be preceded by another event. The second implication says that two
events cannot precede eachother.

Given such a program the IFF proof procedure will produce a set of events and an
ordering on them which

The Eel operational semantics will only abduce one particular set of events satis-
fying the constraints given in the program and might not even succeed in doing that.
More work will be done on connecting the Eel operational semantics to a formal proff
procedure in order to maximise the possibility of producing a solution to any given
query.
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8 Using Eel for Programming Adaptive Agents

This section describes a typical application for the Eel language. The example is
very simple, but serves to describe different general issues in programming anadap-
tive agent.

8.1 An Example Adaptive Agent

A basic ’perceive-act’ cycle has been implemented as a recursive clause. It runs con-
currently with a boolean object with which it communicates.

From the set of communication events an ILP algorithm will synthesise definitions
for the different possible events. These definitions will again be used as extensions to
the program, effectively changing its behaviour according to what it has learnt.

An example agent loop is given below. The abstraction of goals and beliefs are
taken from [8] and [12] respectively.

l_agent(Bool_event_id):-
fulfilled(Bool_event_id,[],[]).

fulfilled(Event_id,Beliefs):-
goal(Goal),
actions(Event_id,Goal,Beliefs,Actions),
act(Actions,Next_event_id),
learn(Next_event_id,Beliefs,New_beliefs),
fulfilled(Next_event_id,New_beliefs).

A concurrently evaluated boolean object accepts value(Value), set and reset events,
where every second message must be a value(Value) message. Until the agent has learnt
how to manipulate the boolean object, its primary goal is to expand its experience by
trying events in new contexts. After having tried all possible events in all available
contexts the agent has the following experience or history, � .

� � =

{event(((i,1),1),value(true)),
event(((i,1),2),set),
event(((i,1),3),value(true)),
event(((i,1),4),reset),
event(((i,1),5),value(false)),
event(((i,1),6),set),
event(((i,1),7),value(true)),
event(((i,1),8),value(true))}

8.2 Synthesising Eel Programs

It is a goal for further work to find a way in which the agent can generalise definitions
of the different events from experimental data. The desired definition is given below.
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The relation is renamed learnt event(ID,Value) so as to not redefine the event(Id,Value)
predicate.

��� =

learnt_event((i,1,N+1),set):-
event(((i,1),N),value(_)),
event((i,1,N+1),set).

learnt_event((i,1,N+1),reset):-
event(((i,1),N),value(_)),
event((i,1,N+1),reset).

learnt_event(((i,1),1),value(true)):-
event(((i,1),1),value(true)).

learnt_event(((i,1),N+1),value(true)):-
event(((i,1),N),set),
event(((i,1),N+1),value(true)).

learnt_event(((i,1),N),value(false)):-
event(((i,1),N),reset),
event(((i,1),N+1),value(false)).

learnt_event(((i,1),N+1,value(Value)):-
event(((i,1),N),value(Value))),
event(((i,1),N+1),value(Value)).

A suggested way of forming the initial hypothesis is to construct one horn clause
for each different grounding of the event message and to introduce a variable for the
event identifier in all the constructed clauses. The body of each clause includes only
the event itself with a variable identical to the one ion the head as the event identifier.
This corresponds to believing that an event can be executed at any time without any
constriction on the event identifier and is the most general practical hypothesis for
any event. Any induced program will be a specialisation of this hypothesis, and this
somewhat restricts the problem of learning a correct theory.

An example initial hypothesis for the example above is given below.

����� =

learnt_event(Id,set):-
event(Id,set).

learnt_event(Id,reset):-
event(Id,reset).

learnt_event(Id,value(true)):-
event(Id,value(true)).

learnt_event(Id,value(false)):-
event(Id,value(false)).

A method for finding a suitable initial hypothesis, � � and an ILP algorithm that
can refine � � to � are currently under construction. Since the task is to generalise
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from only positive examples, an approach that weights generality and complexity of
hypotheses such as that taken in Progol [10] is considered.

An interesting additional approach is to test new hypothesis by experimenting, as
in the work done with the CAP system [5]. This technique is only considered as an
additional method since an agent may not have the resources to experiment if it is
trying to optimise its functionality. It is also necessary to reson about failed events to
use this method.

A third approach is to use results from the area of reinforcement learning. A com-
bination of declarative programming and reinforcement learning has been suggested
[2].

8.3 Executing Synthesised Eel programs

To be able to execute directly the synthesised programs, ground event identifiers must
be substituted into the programs for any existing event identifiers that are described
by variables. By substituting only the identifier of the last event to be executed in
the synthesised program with the identifier of a new, not previously executed event, a
query is constructed that will only succeed if all the other events can be satisfied by
previously executed events.

If an increasing number of new event identifiers is substituted for the event iden-
tifiers described by variables in the synthesised program, it is possible to effectively
take advantage of previous events and reduce the number of new events needed to a
minimum.
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