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Abstract. This paper presents work on reproducing complex forms of
animal learning in simulated Khepera robots using a behaviour-based
approach. The work differs from existing behaviour-based approaches by
implementing a path of hypothetical evolutionary steps rather than using
automated evolutionary development techniques or directly implement-
ing sophisticated learning. Following a step-wise approach has made us
realise the importance of maximising the number of behaviours and ac-
tivities included on one level of complexity before progressing to more
sophisticated solutions. We call this inclusion behavioural holism and
argue that successful approaches to complex behaviour based robotics
must be both step-wise and holistic.

1 Introduction

After abandoning traditional top-down machine learning (ML) methods for learn-
ing novel robot behaviours because of their inherent difficulties with expressing
learning biases and background knowledge, we have taken a behaviour-based
(BB) [2] approach where complex learning behaviours are implemented through
step-wise increases and modifications to already adaptive behavioural founda-
tions.

In order to conduct a number of experiments implementing basic adaptive
animal behaviours, we developed a framework of programmable, learning, ar-
tificial neural circuits (PLANCS) [8]. It provides a neural circuit class which
emulates an independent computational node. The neural circuit abstraction is
also a neuron-inspired extension of an object oriented BB architecture called
Edmund [5], that supports circuit level cognitive modelling.

During this work we have developed two guidelines that extend traditional
BB robotics with respect to developing complex behaviours, in particular learn-
ing behaviours. We call the development approach described by The guidelines
a step-wise and behaviourally holistic approach. The terms step-wise and be-
haviourally holistic are further described in Section 2. Two of the experiments
we conducted on reproducing animal behaviours are presented in Section 3. The
experiments are done using the Webots Khepera robot simulator [7]. Section 4
suggests how an analysis of human evolution can be used to provide a road-map
for step-wise, holistic, BB robotics. Finally, Section 5 discusses the relationship



between the holistic and the ALife approaches to robotics, and answers some
common criticisms of our work.

2 A Step-Wise, Holistic Approach to Robotics

2.1 Defining the Approach

Our step-wise, holistic approach to implementing complex behaviours in robots
contains two additions to the recommendations of behaviour based robotics:

1. Implement a hypothesised path of evolutionary steps to a desired animal
behaviour.

2. Include a maximum number of different behaviours and activities on each
evolutionary level.

2.2 A Step-Wise Approach

Brooks’ original rules for BB robotics [3], suggested taking inspiration from
evolution. We suggest a more extreme approach where rather than just trying
to implement a desired set of behaviours inspired by evolution, each step of
a hypothesised historical evolutionary path to a desired set of behaviours is
implemented.

The motivation for retracing evolution in implementation is that the complex
behaviours found in animals and humans are so poorly understood that robust
and efficient direct implementations are impossible. In these cases, retracing
evolution forces an investigation of the evolutionary history of the behaviour in
question.

Undertaking a complete behavioural investigation can be preferable to imple-
menting a brittle or inefficient approximation, something which has often been
the result of trying to implement complex behaviours directly.

What we call complex behaviours are behaviours that are not directly im-
plementable. Our failure to implement automated learning of novel robot be-
haviours directly was originally the inspiration for researching a behaviour-based
approach to such learning.

An Evolutionary Theory of Learning One of the main sources of inspiration for
our holistic development is the growing amount of knowledge of the physiology
and evolutionary history of biological systems that is found in areas such as
ethology, neuro-science, and the cognitive sciences. There is currently a wide
scope for using this knowledge in AI implementations.

In particular Moore [12] presents a clear theory of how increasingly complex
forms of learning might have developed. Below we list the main types of learning
as presented by Moore, with contributions from other theories added in italics.

— Imprinting
— Alpha Conditioning



Pavlovian Conditioning
— Operant Conditioning
Skill Learning

— Imitation

Language Learning

This list of learning types is not complete, and interesting questions are raised
concerning types of learning not included in this hierarchy such as classification
and insight.

2.3 Behavioural Holism

The second recommendation reflects the realisation that complex behaviours
that involve learning always relate to more basic underlying behaviours support-
ing a number of activities. Complex behaviours cannot be thoroughly explored
without being emerged in a rich behavioural context. The evolutionary histories
of behaviours are highly interrelated, and looking at a limited number can not
reveal all the details necessary for a comprehensive understanding.

Learning is also a problem that needs to be strictly biased if it is to be
successful. The way biases are introduced in biological systems is through a
hierarchical structuring of data and control [6]. This kind of structuring is done
by pre-existing neural circuitry, and the more effective biases we need, the more
underlying circuitry we must provide.

Below we present the three main arguments for the need of behavioural
holism.

Conclusions from Our Own Work As we analysed increasingly complex forms
of conditioning, it became difficult to design natural learning problems to test
the different learning types due to the poverty of the underlying controllers. In
designing an experiment for demonstrating alpha conditioning, we needed the
robot to recognise that a certain stimulus would regularly occur together with
food. The underlying controller could only recognise other robots and food, so
we had to invent an artificial pink box sense.

If a holistic approach had been taken, we would have had a number of senses
related to other basic behaviours to choose from so that our alpha conditioning
experiment would have been more natural and perhaps brought up issues of
behaviour integration that were missed because of the artificial nature of our
pink box sense.

Our BB analysis of conditioning points out that increasingly complex learn-
ing behaviours learning need an increasing number of underlying behaviours to
support it.

Arguments from Cognitive Robotics In 1997, Brooks criticised work in BBAI
for not having a wide enough behavioural repertoire [4]. He recognises the vastly
richer set of abilities needed by robots in order to act like a human, and suggests
work be done on activity interaction and control.



Brooks explicitly lists coherence as an issue to be considered in cognitive
robotics. Coherence is a complex and poorly understood problem that involves
many different sub-systems. A step-wise, holistic approach provides a study of in-
creasingly complex manifestation of problems spanning many sub-systems, such
as coherence, learning and communication. For complex behaviours, this kind of
study is necessary to provide solutions of acceptable quality.

In Section 4 we suggest analysing human evolution in order to create a road-
map of human behavioural evolution as a means to support a holistic approach.

Arguments from Evolution Zoologists have provided one of the strongest argu-
ments for a holistic approach to Al

No single characteristic could evolve very far toward the mammalian
condition unless it was accompanied by appropriate progression of all
the other characteristics. However, the likelihood of simultaneous change
in all the systems is infinitesimally small. Therefore only a small advance
in any one system could occur, after which that system would have to
await the accumulation of small changes in all the other systems, before
evolving a further step toward the mammalian condition.

T.S. Kemp [11]

This quote was also used in [1], which in addition presents the following exam-
ple. In order to maintain a constant body temperature and extend their periods
of activity, warm blooded animals need to consume an order of magnitude more
food than cold-blooded animals. As a result, they have changed the way they
chew food, their breathing, their locomotion, their parenting behaviour, their
senses, their memory capacity, and their brain size.

In cognitive modelling, we can make simultaneous changes, but we cannot
make large changes to some types of behaviour without appropriately advancing
others.

3 Experiments on Adaptive Behaviours

3.1 Reproducing Animal Learning

What our experiments show is that it is possible to implement certain types of
learning using a step-wise BB approach rather than a direct implementation. The
goal of our work is to provide new efficient solutions to learning problems where
current solutions are inefficient or brittle solutions, in particular the learning of
novel behaviour patterns, but also traditional problems such as natural language
acquisition.

As necessary in a step-wise approach, we first looked at low level learning
mechanisms. We conducted four experiments on habituation learning, spatial
learning, behaviour recognition, and basic association. The experiments were
chosen in order to reflect both different types of learning and different types
of activities. The habituation and spatial learning experiments are concerned



with navigation and feeding, the basic association experiment concerns with
feeding and avoiding danger by recognising poison. The behaviour recognition
is concerned with fighting and courtship displays. From the four F’s of animal
behaviour, feeding, fleeing, fighting and procreation, we have touched on all but
procreation.

Below we present only the experiment on behaviour recognition, as it best
displays the working of the step-wise approach.

3.2 Demonstrating Behaviour Recognition

The Experiment Our first attempt at modelling a more complex form of learning
with two interacting adaptive layers, was a courtship display experiment. In this
experiment, two robots used a display behaviour to avoid the injuries of physical
fighting. These kinds of displays are common in animals and are one of the
simplest forms of animal communication [10].

The Environment In order to simulate conflict behaviours, it was necessary to
provide a simulated environment with a number of features. To support physical
fighting, we gave each robot a certain strength and we simulated physical damage
by making energy levels drop noticeably and proportionally to the opponents
strength whenever the Kheperas were in physical contact.

3.3 A Step-Wise Solution

The solution to this restricted form of behaviour recognition consisted of three
evolutionary steps or layers: the reactive interaction layer, the learning from
fighting layer and the display layer.

Reactive Interaction As a basis for more complex interactions, we implemented
a reactive behaviour where a robot always tries to get in physical contact with,
i.e. attack, its opponent when is sees it close by. In Figure 1 we present the
circuits that implement the reactive interaction. These circuits illustrate how
we build more complex learning behaviours on top of simpler solutions. The
ApproachFeederPositionController that the reactive interaction behaviour is put
on top of is the solution to the mapping experiment. Up to this level, the robots
take no notice of other robots.

A Khepera sense was added which recognises when the opponent is in a
threatening position, i.e. near by and facing our robot. In such cases, a touch
Khepera drive which inhibits all other behaviour, approaches the other robot in
a simulated fighting behaviour. This simple reactive behaviour would in the long
term lead to the simulated death of the weakest robot.

Learning from Fighting The first adaptive layer implemented to support be-
haviour recognition was a layer where the robots learn which one is the strongest
by the amount of damage they take. A memory circuit is then used in this
behaviour to remember the pain of being the weakest robot. This memory is
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Fig. 1. Reactive Robot Interaction

supported by a pain sense which picks up losses of energy and a fear emotion
which is activated by the pain sense. After a fear based memory is established,
an avoidance drive ensures that the weakest robot avoids its opponent in the
future. The circuits involved in the fighting behaviour are presented in Figure 2.
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Fig. 2. Learning from Fighting

Learning from Courtship Displays On top of the fighting layer, we implemented
a courtship display layer which took the form of a stand-off initiated by the
Khepera sense. In a stand off, the robots remain motionless for an amount of
time corresponding to their strength. This behaviour needed a strength sense
and a memory circuit to keep track of how long the robot had been displaying.
These two circuits were used to support a Khepera stronger sense which was
activated when it became clear that the other Khepera was stronger.



This use of memory can be described in the habituation type learning frame-
work as increased sensitisation of a yielding behaviour, where the strength sense
acts as a threshold.

The stand-off was over when one robot recognised the opponent as stronger.
This recognition fired the fear emotion and a basic memory was created using
the same circuit that was used in the physical fighting layer.

The final addition was to let the avoid Khepera fear drive inhibit the display
drive in order to yield and as a result break up the stand-off by no longer taking
a threatening stand. The circuits used to implement the display behaviour on
top of the fighting behaviour are displayed in Figure 3.
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3.4 Conclusions

Our experiments show that a number of different forms of animal learning can
be reproduced in simulated Khepera robots using a step-wise approach. The
experiments together with a PLANCS based analysis of the class of learning
problems called conditioning [15] indicate that a step-wise and behaviourally
holistic approach is sufficient for implementing these forms of learning. More
complex forms of learning however would need to be studied explicitly before we
can evaluate the feasibility of finding a solution using this approach.

4 A Road-Map from Evolution

When hypothesising a path of evolutionary steps to a desired behaviour, it is
helpful to have a clear picture of the evolutionary background of that behaviour.



To include appropriate behaviours with sensible levels of sophistication at
each step in a holistic manner, it is helpful to have an idea of what types of
behaviours and levels of sophistication are likely to have coexisted during evo-
lution.

We suggest that an analysis of human evolution in terms of co-existing be-
haviours of different evolutionary sophistication as well as bodily complexity can
be a helpful road-map for a step-wise, holistic approach to BB robotics.

Figure 4 gives an idea of what such a road map might look like. It presents six
numbered evolutionary stages. Between the stages are behaviours and physical
attributes that are likely to have coexisted during evolution. Figure 4 is roughly
put together from an introductory level text on evolution [16] and is only meant
to convey the idea of how a road-map would look. It is not meant to exclude any
dimension of behaviour that has an evolutionary history if a better knowledge
of that dimension would facilitate development.
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Fig. 4. Human Evolution as a Road-Map to Robotics

Communication Communication is a dimension of behaviour which was not
included in Figure 4. This aspect of behaviour spans all of evolution, has a dra-
matically increasing complexity and on a human level constitutes the important
areas of production and recognition of speech and text.

The holistic approach was developed to study learning, another type of sec-
ondary behaviour. It should also provide results in the area of communication
since the evolutionary histories of the two behaviours are closely interrelated.



Presumably, there are other dimensions of behaviour or influences on be-
haviours that could be added to Figure 4. We continue to seek discussion about
our analysis and also aim to update it with new results from the relevant sciences.

Currently Unreachable Problems In robotics, research is currently taking place
on issues on all the different levels of complexity presented in Figure 4 and very
little work has been done on integrating behaviours in holistic frameworks. The
behaviours on the lower levels might be studied in isolation with some credibility,
while in the levels further up, one-dimensional research gets less and less useful
in an AT context.

Existing research in areas like planning, reasoning, and language recognition
and production, has produced important scientific results and impressive soft-
ware engineering tools, but it is not obvious that any of these tools have a place
in complex robotic systems.

5 Discussion

Step- Wise, Holistic Approaches and ALife Our reason for not taking an auto-
mated search approach to evolutionary robotics the way the ALife community
does [14] is primarily because we believe that it is more efficient to implement
current theories from the relevant sciences directly, than it is to express those
theories in the form of fitness functions and environments in order use auto-
mated search to find solutions. It can be argued that the solutions found using
automated search are more robust and can take into account parameters that are
not known to the developers. Automated search might also provide new knowl-
edge about specific problem domains. We believe that these possible results do
not warrant the abandonment of our approach. Our approach has an engineer-
ing emphasis rather than an automated search emphasis, but we see the two
methods as complimentary and believe that the automated search approach to
evolutionary robotics would also benefit from adopting our holistic principles.

Common Criticism It has been suggested to us, and from our results it is some-
times tempting, to try to create a neural circuit based model for high level
learning in order to ’solve’ the problem of high level learning. We think the
utility of such an effort would be limited. Our experiments are an exploration
of basic forms of learning and do not test a pre-formulated hypothesis about
learning. We do not want to commit to a general theory of learning such as e.g.
artificial neural networks or reinforcement learning. Our effort seeks to restrict
the search space for common animal learning problems by providing supporting
neural structures. The learning problems that remains should be solvable using
any learning technology.

The background for this reasoning is that because of the evolutionary cost
of adaptability, it is likely that any evolved learning mechanism will be a simple
form of learning placed in a complex behavioural context, rather than a more
unconstrained complex learning mechanism with a larger probability of learning



the wrong things. This belief is reinforced by the way many form of learning,
previously thought to demand complex learning frameworks, such as spatial
learning and imitation, turn out to be implementable using simple adaptive
circuits strategically placed within complex behavioural circuitry. It is further
supported by the presence of the necessary contextual neural circuitry in animals
[13,9].

References

w N =

10.

11.

12.

13.

14.

15.

16.

J. M. Allman. Ewolving Brains. Scientific American Library, 1999.

R. C. Arkin. Behaviour Based Robotics. MIT Press, 1998.

R. A. Brooks. Intelligence without reason. In Proceedings of IJCAI 91, pages
569-595. Morgan Kaufmann, 1991.

R. A. Brooks. From Earwigs to Humans. Robotics and Autonomous Systems,
20(2-4):291-304, 1997.

J. J. Bryson and B. McGonigle. Agent Architecture as Object Oriented Design.
In Intelligent Agents IV, Proceedings of the Fourth International Workshop on
Agent Theories, Architectures, and Languages (ATAL’97), LNAI 1865, pages 15—
30. Springer Verlag, 1997.

J. J. Bryson and L. A. Stein. Modularity and Specialized Learning: Mapping Be-
tween Agent Architectures and Brain Organization. In Proceedings of the EmerNet
International Workshop on Concurrent Computational Architectures Intergrating
Neural Networks and Neuroscience. Springer Verlag, 2000.

H. I. Christensen. The WEBOTS Competition. Robots and Autonomous Systems
Journal, 31:351-353, 2000.

T. S. Dahl and C. Giraud-Carrier. PLANCS: Classes for Programming Adap-
tive Behaviour Based Robots. In Proceedings of the 2001 Convention on Artificial
Intelligence and the Study of Simulated Behaviour (AISB’01), Symposium on Non-
conscious Intelligence: From Natural to Artificial, 2001.

V. Gallese, L. Fadiga, L. Fogassi, and G. Rizolatti. Action Recognition in Pmotor
Cortex. Brain, 119:593-609, 1996.

M. D. Hauser. The Evolution of Communication, chapter 6 Adaptive Design and
Communication, pages 450-470. MIT Press, 1996.

T. S. Kemp. Mammal-like Reptiles and the Origin of Mammals. Academic Press,
1982.

B. R. Moore. The Evolution of Imitative Learning. In C. M. Heyes and B. G.
Galef, editors, Social Learning in Animals: The Roots of Culture, pages 245-265.
Academic Press, 1996.

R. U. Muller, J. L. Kubie, E. M. Bostock, J. S. Taube, and G. J. Quirk. Spa-
tial firing correlates of neurons in the hippocampal formation of moving rats. In
J. Paillard, editor, Brain and Space, chapter 17, pages 296-333. Ocford University
Press, 1991.

S. Nolfi and D. Floreano. Ewolutionary Robotics: The Biology, Intelligence, and
Technology of Self-Organizing Machines. MIT Press, 2000.

J. M. Pearce. Animal Learning and Cognition. Psychology Press, 2nd edition,
1997.

M. W. Strickberger. Evolution. The Jones and Bartlett Series in Biology. Jones
and Bartlett Publishers, Second edition, 1995.



