
The Eel Programming Language
and Internal Concurrency in Logic Agents

T. S. Dahl
�

October 13, 2009

Abstract

This paper describes work done on creating the logic programming language
Eel. Eel is an is an extension of prolog which reserves two predicates to handle
i/o, process communication and process initiation.

The paper also presents an adaption of a behaviour based agent architecture
and gives examples of how parts of that adapted architecture can be implemented
in Eel. As an aside the paper comments that the Agent Oriented Programming
paradigm currently contains two different metaphors for concurrency.

Eel’s event based approach to process communication and process initiation
introduces an explicit representation of state to the evaluation of a logic program.
The paper demonstrates how Eel can be used for a declarative approach to object
states in the examples that show the object oriented implementation of the suggest-
ed agent architecture.

1 Introduction

The motivation for this work is the need for a declarative language which can describe
common features of agent oriented programming. The long term goal is to have a
system where ILP type learning is used to improve existing agent behaviour. In that
context it is important to have explicit representations of features like process com-
munication and initiation while keeping the language as simple as possible in order to
minimize the search space of any learning algorithm.

Section 2 of this paper presents the Eel programming language, its syntax and its
operational and declarative semantics. Eel, is expressive enough to implement complex
agent architectures and behaviours while its simplicity also hides as much as possible
of the program control from the programmer in the spirit of logic programming.

Section 3 of the papers presents a behaviour based agent architecture which is easier
to understand and manipulate than currently existing agent architectures. In particular
it makes it easier to manipulate agents that already implement a complex theory of
behaviour.

�

Machine Learning Research Group, Department of Computer Science, University of Bristol, Merchant
Venturers Building, Woodland Road, Bristol BS8 1UB, United Kingdom. email: tdahl@cs.bris.ac.uk

1



Sections 4 briefly presents a problem posed as a challenge to autonomous agents
for the European Conference on Artificial Life and a solution to that problem based on
the Lobster architecture presented in Section 3. Section 5 gives examples of how that
solution may be implemented in the Eel language.

Section 6 draws conclusions from the presented work and presents the future direc-
tions of this research.

2 The Eel Programming Language

To deal with concurrency, the declarative programming community has developed pro-
gramming languages with implicit [Gre87] as well as explicit [PMCA86, Gre97] pro-
cess communication.

Eel [Dah98] takes the explicit approach and is built on a limited model of com-
munication which only allows synchronous point to point communication and which
doesn’t have the concepts of sending and receiving messages but instead relies on mes-
sage unification as the method of information exchange between processes. This model
is chosen for its simplicity and so far, it has been sufficient to describe the agent domain
problems considered.

Dedicated send and receive predicates can be implemented on top of this model if
this is desireable and the use of dedicated communication processes allows the imple-
mentation of asynchronous message passing.

2.1 Eel Syntax

Eel reserves two predicates for handling communication, event(Event id,Message) and
precedes(Event id1,Event id2). These correspond closely to the Monad type [Wad95]
and the temporal sequencing constraint ’ ����� ’ used in some functional languages,
such as Haskell.

� The event/2 predicate refers to a communication event. Unless an event match-
ing the description given in the arguments has already taken place and is stored
in the event history, the evaluation causes the synchronisation of the processes
implied by the Event id argument and a unification of the literals specified by the
Message argument in each of the processes.

� The precedes/2 predicate refers to two communication events and restricts the
second or constrained event, to take place only after the first or constraining
event.

� An event identifier has the following format id(Unique id,p(Proc id1,Proc id2)).
The Unique id argument is a unique identifier for the event, assigned on suc-
cessful evaluation. The two arguments of the p term indicate the two processes
involved in the communication. Proc id1 is called the transmitting process name
and Proc id2 is called the receiving process name.

The process naming scheme is inspired by Qu-Prolog [CRH98] in which every
process has a unique name which reflects what machine it is running on. The

2



process names stdin, stdout, time and init are reserved for user input, user output,
communication with a real time clock and the initiation of a new, concurrently
running process.

� The Message argument can be any literal, but when two synchronising events u-
nify their messages, the result must be ground in order for the event evaluation to
succeed. Eel’s declarative semantics demands that an unground variable would
later have the same instantiation in both processes; something that would involve
implicit process communication.

2.2 The Eel Operational Semantics

As in pure Prolog, the operational semantics of all the unreserved predicates in Eel
is the process semantics. The reserved predicates have a more complex semantics in
order to constrain and synchronise communication.

Global Process Records: During program evaluation, Eel keeps four global records
which influence the result of event evaluation:

� H is the event history. It records all the historic events, events that a process has
successfully evaluated. The unique identifiers of the events record the order in
which they were evaluated.

� Ws records all the disjuncts in the current goal that are currently suspended
awaiting synchronisation with other processes.

� Wc records disjuncts awaiting the satisfaction of their constraints. When a con-
strained event is evaluated, the disjunct it is a part of is recorded here and further
evaluation is delayed until the constraint is satisfied.

� P records external processes that have requested event synchronisation with this
process.

Records Local to Disjuncts: In addition to the global process records records, Eel
keeps two local records for each disjunct in the current goal

� UC records all the unsatisfied constraints that have been evaluated in this branch
of the SLD-tree. A constraint is unsatisfied if there is no historic event matching
the constraining event identifier. When an event matching the constraining event
identifier is evaluated, the now satisfied constraint is removed from this record.

� SC records satisfied constraints for which there are no historic events matching
the constrained event identifier. When an event matching the constrained event
identifier is evaluated, the constraint is removed from this record.

In order to satisfy the declarative semantics of Eel, there must be historic events to
match both the constraining and the constrained event identifiers. The evaluation of a
disjunct fails if, at the end, the local records UC and SC contain any constraints.

3



The evaluation of an event(Event id,Message) literal: The evaluation of an event
literal follows the steps given below:

1. The event identifier is checked for variables. If the unique event identifier is a
non-ground variable, a new disjunct is created for every historic event which
matches the event. In addition a disjunct is created in which the event is given a
unique event identifier which indicates that the event is a future event

2. If the unique event identifier is ground, H is checked to see if the event literal
can be unified with a historic event. If it can, the evaluation succeeds.

3. If the ground unique event identifier indicates that the event is a future event,
UC is checked for unsatisfied constraints on the event. If there are any such
constraints, the disjunct containing the event is added to Wc.

4. If there are no unsatisfied constraints on the event, the process names are checked
to see if they indicate an internal, external or special event. Internal event are
indicated by having the evaluating process’ name in both the transmitting and
then receiving process name fields. An internal event immediately succeeds and
is added to H. Such events can be used to keep track of the evaluation state of a
single process without refering to external processes.

5. If the event is special, it indicates either user input, user output, a real time check
or the initiation of a new process. A user input event succeeds if the input unifies
with the event message, a user output event succeds immediately on printing the
event message, a real time check event succeeds by unifying the event message
with a representation of the current time, and a process initiation event succeeds
if a new process can be initiated with the process name given in a structured
process initiation message. The query part of the process initiation message is
treated as the initial query in the new process. The process initiation message
has the structure ������� �	��
� ��������������������� .

6. If the event is external, P is checked for an event synchronisation request from
the receiving process. If no such request is registered, Eel requests synchronisa-
tion for this event from the other process and the disjunct containing the event is
recorded in Ws.

7. If the other process is registered in P, a synchronisation point has been found.
Eel then interrupts the other process and attempts to unify the message from the
other process with the message in this process. If the unification fails or the result
is not ground, the evaluation of the event fails.

When an event evaluation succeeds, the event is added to H. The other process’
synchronisation request is removed from P. All constraints in UC which have the eval-
uated event as the constraining event are removed and all the constraints in SC which
have the evaluated event as the constrained event are removed. If any recorded con-
straint contains a variable for either the constraining or the constrained event, new
disjuncts are added to the goal with these constraints unified with the evaluated event.

4



Finally, if any disjuncts from Wc are now available to be evaluated, they are added
to the current goal.

When evaluation is interrupted by another process that has found a synchronisation
point, and a successful ground unification of the messages is made, any disjunct con-
taining the successfully evaluated event is added to the front of the current goal. The
disjunct is then removed from Ws and the evaluation of the event on which the disjunct
was supspended succeeds.

So far, a detailed operational semantics has not been developed for variables in
the process names, but the intuitive interpretation is to then create a disjunct for all
communicating processes that can ground the given variables. This would allow an
event with a variable in the receiving process id to communicate with any process,
including itself, i.e. interpret the event as internal.

The evaluation of a precedes(Event id1,Event id2) literal: The evaluation of a pre-
cedes(Event id1,Event id2) literal also called a constraint, follows the sequence given
below:

1. The constraint’s event identifiers are checked for variables. If there are any vari-
ables in the unique event identifiers, disjuncts are added to the current goal from
all the combinations of historic events that satisfy the constraint. In addition
the constraint is added to the constraint records UC and SC of the disjunction
currently being evaluated.

2. If the constraint’s unique event identifiers are ground, H is checked for events
that have event identifiers which unify with the two event identifiers given in the
constraint. If two events from H can be found which satisfy the constraint, the
evaluation succeeds.

3. If an event matching the constrained event is found, but no match is found for
the constraining event, the evaluation fails.

4. If an event matching the constraining event is found, but no match is found for
the constrained event, the evaluation succeeds.

5. If no event is found to match any of the events specified, Eel records the con-
straint in the constraint records and the evaluation continues.

2.3 The Eel Declarative Semantics

As in Prolog, the program P, is a set of horn clauses. Evaluation is initiated by a query
q, and the declarative semantics are that all the variable-bindings � , which make the
program imply the query, are found.

Eel abduces the reserved literals needed to deduce q from P. The abduced con-
straints form a partial ordering ��� , on the set of abduced event literals, E.

Two processes communicating with eachother have different for the transmitting
and receiving processes. To give a unique declarative representation of the correspond-
ing communication event, the declarative interpretation of the process name part of an

5



event identifier, � ��� ������� ��������� �
	 �	�
�� � ��� ������ �
	 �	��
� � , is an unordered set of two
process names.

The declarative semantics of Eel states that E is abduced in such a way that the par-
tial ordering described by � � is a subset of the temporal ordering � � on the abduction
time of the event literals.

In plain words, the order in which the events take place or are abduced, respects the
ordering described by the abduced constraints.

Formally this can be expressed as:

� ��������� � ����� � ��� � ����� �
With respect to the declarative semantics, the operational semantics of Eel are

sound but not complete. The incompleteness results from the commitment to a restrict-
ed set of temporal orderings which is a result of the arrangement that the abduction of
an event literal corresponds to doing input or output.

It is also important to point out that the set of abduced events is a subset of all the
events successfully evaluated.

Process Initiation: To make the declarative semantics of process initiation comply
with the operational semantics, the precence of the clause

��������� ������� � � � ��� ����� � � ��������� � �
� ��� � ����� � ����� ��� ���������
is always assumed in the declarative interpretation of an Eel program. This clause is

called the process initiation clause. Its precence forces the logical interpretation of an
Eel program to coincide with the result of the evaluation by demanding that the event
query is true whenever a event literal which indicates process initiation is abduced.

3 Concurrent Agent Architectures

There are indications that an evolutionary inspired design method based on building
complex behaviours as small additions to a concurrent set of simpler behaviours is
the best way of designing agents with efficient, robust and complex behaviours. This
behaviour based approach has its roots in the Subsumption Architecture [Bro91] which
was very successful in controlling basic robot behaviour, but which turned out however
to create a lot of problems for system developers in that it merged the flow of data with
the flow of control.

Two Metaphors for Concurrency: In 1993, Shoham coined the term Agent Orient-
ed Programming [Sho93] and presented a traditional sense-act cycle as a way of dealing
with mental modalities like commitment and intentions. That and other work on repre-
senting such modalities shifted the focus of agent research away from communication
between concurrent processes towards the internal processes of an agent.

A few years before, Brooks had criticised such architectures for their lack of con-
currency and for their explicit representation of mental properties [Bro91]. Brooks
instead suggested a fully concurrent Subsumption Architecture. The Subsumption Ar-
chitecture gave rise to the Behaviour Based Approach to AI (BBAI), but as BBAI ma-
tured, more hierarchically structured architectures were suggested, with support from

6



research in biology [BM97]. The new BBAI architectures have greatly improved in
comprehensibility, while building on the strengths of the Subsumption Architecture,
concurrency and inspiration from evolution.

Brooks’ criticism brought agent research back to its origin, the question of concur-
rency. As a result, AOP now contains two metaphors for concurrency; the traditional
view of concurrent programs as communicating agents, and the novel behaviour based
view of concurrent programs as interacting behaviours.

3.1 The Lobster Architecture

A particular BBAI agent architecture that has been successfully applied to both robot
control and to a simulated environment, is the Edmund architecture [BM97]. The Lob-
ster architecture builds on the Edmund architecture, with a few important differences.

Both architectures have a set of concurrent drives which again consist of a number
of concurrent competences. The competences also consist of further competences or
of fixed action patterns. Fixed action patterns are sequences of bottom level atomic
actions.

A drive has a given priority that can override or be overridden by other drives’
priorities. On startup, the drives register triggers with different senses. Senses are
concurrently running processes that create sensible data from the bottom level sensors.
During runtime, the senses trigger the drives. The drives initiate their competences
which again activate further competences or fixed action patterns. An initiated fixed
action patterns executes uninterrupted.

The main difference between the Edmund and the Lobster architectures is that Lob-
ster drives run truly concurrently. This forces some arbitration between the desired
actions of different drives in order to respect fixed action patterns and avoid conflict-
ing actions. The Lobster architecture introduces an arbitration module as a common
interface to the actuators. This module introduces further structure to the agent and is
another step away from the strict concurrency demanded in the Subsumption Architec-
ture. The reason for introducing it against the behaviour based tradition is the increased
comprehensibility it introduces over the alternative of a network of inhibition and exci-
tation channels between actuators. In addition there is evidence that the basal ganglia,
a modularised part of the brain, serves a similar purpose in animals [GPR98].

4 An Example Behaviour Based Solution

To give an example of the functionality of the Lobster architecture and the Eel lan-
guage, Sections 5.1 and 5.2 show examples from the implementation of an agent solv-
ing a simple problem presented for the Artificial Life Creator Contest which took place
during the Fifth European Conference on Artificial Life, ECAL’99.

The Food Race Problem: The given task is to control an agent which is a simulat-
ed version of a Khepera robot. The agent competes with one other agent and has to
navigate a random environment to find feeders. When a feeder is found the agent has
to position itself correctly so that it receives the energy from the feeder. Over time the

7



Wander

Move (Wander Dir.)

Turn Forward Right Wheel, Wait, Stop

Forward Both Wheels, Wait, Stop

Approach (Feeder Dir)

Feed (Hunger)

Move (Feeder Dir.)

Turn

Receive (Feeder Pos.) Wait

Figure 1: The Wander and Feed Solution

agent uses energy and the feeders are refilled at a decreasing rate. If an agent goes too
long without feeding it dies, and the agent that is the last one alive is the winner.

The agents have a simulated infrared distance sensor and a simulated 80x60 pixels
colour camera as their given sensors.

The world contains a maze with a number of feeders and a number of landmarks
which can be used to build maps for remembering the positions of the feeders.

The Wander and Feed Solution: The agent designed to solve this problem has two
drives; feed and wander. The wander drive keeps the agent moving and the feed drive
overrides it whenever a feeder is observed. The solution is visualised in Figure 1.

The Lobster architecture is very naturally implemented as objects. Three senses
are implemented to run concurrently on top of the sensors. The senses are; direction of
present feeder, feeding placement, and for simplicity, most promising wander direction.

The feed drive initiates the two competences; approach and receive. If a feeder
appears, the priority of the approach competence will send the agent towards it. When
the feeding placement sense signals that the agent is close to the feeder, the receive
competence overrides the approach competence and positions the agent correctly for
receiving food.

The wander drive initiates two competences; turn and move. If no wander direction
is available the turn competence will turn the agent. If a wander direction becomes
available, the move competence will override the turn competence and make the agent
move forward.

This is a simplified solution to a simplified problem, but it describes how a be-
haviour based problem would be solved in the Lobster architecture.

8



5 Implementing the Lobster architecture in Eel

The examples provided in this section are meant to give an idea of how Eel code looks
and how the reserved predicates are used to solve problems of process communication
and initiation.

5.1 Object States in Eel

Eel’s event history indirectly represents an object’s state. This is exemplified here by
the arbitrator module from the Lobster architecture, here implemented as an object.
When a fixed action pattern (fap) requests actions, the arbitrator module must allow it
to finish uninterrupted. To do this it enters a fap exclusively state where it only accepts
events from the fap until the fap process sends a done message. Pure Prolog is not able
to handle object state, and this has been considered the reason for the failing merger of
the LP and the OOP paradigms. Eel now makes it possible to implement all aspects of
OOP in a declarative logic language.

The code for checking that a message has previously been received from a fap and
that the last message received from the fap was not a done message, is given below.
This is the test used by the arbitrator module to find out if it is in a fap exclusively
state. The time event is an internal event which is used to create a temporal reference
point for the current state.

accept_action_requests:-
fap_exclusively_state,
event(id(Fid,p(arb,fap)),Message)
handle_message(Message),
accept_action_requests.

accept_action_requests:-
not(fap_exclusively_state),
event(id(Id,p(arb,Any_proc)),Message),
handle_message(Message),
accept_action_requests.

fap_exclusively_state:-
event(id(Int_id,p(arb,arb)),true),
precedes(id(Fid1,p(fap,arb)),id(Int_id,p(arb,arb))),
event(id(Fid1,p(fap,arb)),Message),
not(precedes(id(Fid2,p(arb,fap)),id(Int_id,p(arb,arb))),

precedes(id(Fid1,p(arb,fap)),id(Fid2,p(arb,fap))),
event(id(Fid2,p(arb,fap)),Message),
Message!=done).

5.2 Concurrent Evaluation in Eel

For concurrent evaluation, Eel can spawn processes. One example is a drive that s-
pawns several competences and passes them the identities of the senses so that they
can register their triggers with these.

9



The reserved process identity init, indicates that a new process is to be initiated. In
this case the message holds the new process name and the initial query. The event only
succeeds if Eel manages to initiate a new process with the given name evaluating the
given query.

In the code below the feed drive spawns its competences when it gets hungry and
shuts them down again when it is full.

feed(Hunger_need,Feeder_sense,Pos_sense,Arb):-
passive_feed(Hunger_need,Feeder_sense,Pos_sense,Arb).

passive_feed(Hunger_need,Feeder_sense,Pos_sense,Arb):-
event(id(Id,p(Hunger_need,feed)),Hunger),
init_comps(Hunger,Hunger_need,Feed_sense,Pos_sense,Arb).

init_comps(Hunger,Hunger_need,Feeder_sense,Pos_sense,Arb):-
Hunger>5,
event(id(Id1,p(feed,init)),(app,app(Feeder_sense,Arb))),
event(id(Id2,p(feed,init)),(rec,rec(Pos_sense,Arb))),
active_feed(Hunger_need,Feeder_sense,Pos_sense,Arb).

init_comps(Hunger,Hunger_need,Feeder_sense,Pos_sense,Arb):-
passive_feed(Hunger_need,Feeder_sense,Pos_sense,Arb).

active_feed(Hunger_need,Feeder_sense,Pos_sense,Arb):-
event(id(Id,p(Hunger_need,feed)),Hunger),
shut_comps(Hunger,Hunger_need,Feeder_sense,Pos_sense,Arb).

shut_comps(Hunger,Hunger_need,Feeder_sense,Pos_sense,Arb):-
Hunger<=5,
event(id(Id1,p(feed,app)),shutdown),
event(ids(Id,p(feed,rec)),shutdown),
passive_feed(Hunger_need,Feeder_sense,Pos_sense,Arb).

shut_comps(Hunger,Hunger_need,Feeder_sense,Pos_sense,Arb):-
active_feed(Hunger_need,Feeder_sense,Pos_sense,Arb).

6 Conclusions and Future Work

The Eel language is hoped to be a simple and clean, but still intuitive approach to
concurrent and distributed logic programming. It has not been lacking in expressive
power when it has been used to design solutions to complex problems like the food
race presented in Section 4.

The results presented here are mainly from work done on an initial prototype Eel
interpreter.

An improved Eel interpreter is currently under development, using Sicstus Prolog
and Linda, this work continues to bring to light new issues that follow from this ap-
proach to concurrent and distributed logic programming.

The Eel framework also needs further developing, particularily with respect to al-
lowing unground variables in the process names of an event identifier and with regards
to programming with negation.

10



References

[BM97] J. J. Bryson and B. McGonigle. Agent Architecture as Object Oriented
Design. In Intelligent Agents IV, Proceedings of the Fourth International
Workshop on Agent Theories, Architectures, and Languages (ATAL’97),
LNAI 1365, pages 15–30. Springer Verlag, 1997.

[Bro91] R. A. Brooks. Intelligence without reason. In Proceedings of IJCAI 91,
pages 569–595. Morgan Kaufmann, 1991.

[CRH98] K. Clark, P. Robinson, and R. Hagen. Programming internet distribut-
ed DAI applications in Qu-Prolog. Presented at the Australian DAI WS,
Brisbane, 1998.

[Dah98] T. S. Dahl. Eel, A Declarative Language for Programming Adaptive A-
gents. Technical Report CSTR-98-008, Department of Computer Science,
Bristol University, August 1998.

[GPR98] K. N. Gurney, T. J. Prescott, and P. Redgrave. The Basal Ganglia viewed
as an Action Selection Device. In Proceedings of the Eighth International
conference on Artificial Neural Networks, 1998.

[Gre87] S. Gregory. Parallel Logic Programming in PARLOG, The Language and
its Implementation. International Series in Logic Programming. Addison-
Wesley, 1987.

[Gre97] S. Gregory. A Declarative Approach to Concurrent Programming. In
H. Glaser, editor, Proceedings of the 9th International Symposium on Pro-
gramming Languages, Implementations, Logics, and Programs. Springer-
Verlag, 1997.

[PMCA86] L. M. Pereira, L. Monteiro, J. Cunha, and J. N. Aparicio. Delta prolog:
A distributed backtracking extension with events. In E. Y. Shapiro, edi-
tor, Proceedings of the Third International Conference on Logic Program-
ming, volume 225 of Lecture Notes on Computer Science, pages 69–83.
Springer-Verlag, 1986.

[Sho93] Y. Shoham. Agent-oriented programming. AI Journal, 60(1):51–92, 1993.

[Wad95] P. Wadler. Monads for functional programming. In J. Jeuring and E. Mei-
jer, editors, Advanced Functional Programming, volume 925 of LNCS,
pages 24–52. Springer-Verlag, 1995.

11


