CS545 Lecture 16
Mobile Robotics

e Mobile Robots

e Control Paradigms

e Locomotion

e Behavior-based robotics

* http://robotics.usc.edu/~aatrash/cs545

Slides based on:

. Computational Principles of Mobile Robotics — Gregory Dudek
. Probabilistic Robots — Sebastian Thrun

. Behavior-based Robotics — Ron Arkin

. Presentation by Dieter Fox



Mobile Robots

 Robots no longer restricted for factory settings
— Entertainment, toys
— Personal services
— Medical
— Industrial Automation (mining, harvesting)
— Hazardous environments (space, underwater)

 Agents need to be mobile



Shakey

* One of first general purpose robots
e Stanford Research Institute

e Use classical planning




Classical Planning Paradigm

—> Sense — Plan —> Act

Direct application of Al tech to robots

STRIPS (Stanford Research Institute Problem
Solver)

Assumed perfect world. No noise
SLOW !



Reactive/Behavior-Based

Sense € > Act

e No models/planning. “World is its own, best
model”

 Based on biological systems
e Good for local decisions
e Many limitations



Hybrid

Plan \
Sense / Act

e Combination of other paradigms

— Use planning components for slower long-term
planning

— Use reactive system for fast, local control



Probabilistic Robots

 Assume models and sensors are inaccurate
— Sensors bad
— Incomplete information
— Motors not precise

* Integrate models and sensing

 Bayes Rule:
P(B|A)P(B)

P(A)

P(A|B) =



Control Architecture (Example)

Interface

{

Planner

v

/ Mapping
Localization

\ Path Planner

\

Obstacle
Avoidance

_—




Locomotion

roll />
y
>
y -~

Z motion

e Common Drives
— Differential — rotation by speed of wheels
— Synchronous — can steer wheels
— Tracked — tanks
— Car — Ackerman steering

e Holonomic vs. non-Holonomic



Instantaneous Center of Curvature

* |nstantaneous Center of Curvature

— Intersection of x-axis of wheels

ICC

O

Bad!!!

Good!




Differential Drives

A

icc w | ICC=[x—Rsiné, y— RcosH]
Vi

- ‘39 CCJ(R-!—]/z):VI‘
g W(R—-1/2)=w

,/x V P [ (vi+vr)

r 2 (V}*_Vf)

Vr—Vi
) =

/



Differential Drive
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Ackerman Steering
(Kingpin Steering)

@’ _______________

Centre of turning circle

From wikipedia.org



Other examples

e Bicycle
e Tricycle



Classic Planning

Sensors

Task planner

l

Path planner

l

Obstacle
Avoidance

l

Motor
Control




Behavior-based Robotics

Explore

Wander @

Obstacle
Avoidance

Find Red
Objects




Behavior-based Robotics

Reactive systems

No models. No memory

Tight coupling between sensors and actuation
Only local sensing/decision-making

Based on biology



Behaviors

* Direct mapping from sensing to actuation

e Basic modules
— Move Forward
— Wander
— FollowHallway
— AvoidObstacles

 Networks of sensing and acting modules (Finite
State Automata)

e Subsumption Architecture



Subsumption Architecture
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Potential Fields

e Treat robot as particle

 Environment generates potential field vectors
e Direct robot at each point
 Magnitude changes with distance
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Potential Fields
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Potential Fields

e Obstacle Avoidance - Add repulsive forces |
around objects

e Wander — Add random field

* Follow Hallway — Two perpendicular forces
and uniform force



Characteristics

e Problems with local minima

* Require significant domain knowledge



Upcoming

e Next time: Tracking/Data Fusion
— Kalman Filters
— Extended Kalman Filters
— Bayesian Filters
— Particle Filters
e later:
— Optimal Control (Bellman, MDPs)
— Adaptive Control
— Probabilistic Robotics
— Localization, Mapping



