CS545 Lecture 16 Mobile Robotics

- Mobile Robots
 - Control Paradigms
 - Locomotion
 - Behavior-based robotics
- http://robotics.usc.edu/~aatrash/cs545
- Slides based on:
 - *Computational Principles of Mobile Robotics* Gregory Dudek
 - Probabilistic Robots Sebastian Thrun
 - Behavior-based Robotics Ron Arkin
 - Presentation by Dieter Fox

Mobile Robots

- Robots no longer restricted for factory settings
 - Entertainment, toys
 - Personal services
 - Medical
 - Industrial Automation (mining, harvesting)
 - Hazardous environments (space, underwater)
- Agents need to be mobile

Shakey

- One of first general purpose robots
- Stanford Research Institute
- Use classical planning

Classical Planning Paradigm

- Direct application of AI tech to robots
- STRIPS (Stanford Research Institute Problem Solver)
- Assumed perfect world. No noise
- SLOW!!!!

- No models/planning. "World is its own, best model"
- Based on biological systems
- Good for local decisions
- Many limitations

- Combination of other paradigms
 - Use planning components for slower long-term planning
 - Use reactive system for fast, local control

Probabilistic Robots

- Assume models and sensors are inaccurate
 - Sensors bad
 - Incomplete information
 - Motors not precise
- Integrate models and sensing
- Bayes Rule:

$$P(A|B) = \frac{P(B|A)P(B)}{P(A)}$$

Control Architecture (Example)

- Common Drives
 - Differential rotation by speed of wheels
 - Synchronous can steer wheels
 - Tracked tanks
 - Car Ackerman steering
- Holonomic vs. non-Holonomic

Instantaneous Center of Curvature

Instantaneous Center of Curvature \bullet Intersection of x-axis of wheels Bad!!! ICC Bad!!! Good!

Differential Drives

 $ICC = [x - R\sin\theta, y - R\cos\theta]$

 $\omega(R+l/2) = v_r$ $\omega(R-l/2) = v_l$ $R = \frac{l}{2} \frac{(v_l + v_r)}{(v_r - v_l)}$ $\omega = \frac{v_r - v_l}{l}$

Differential Drive

Synchronous Drive

From wikipedia.org

Other examples

- Bicycle
- Tricycle

Behavior-based Robotics

Behavior-based Robotics

- Reactive systems
- No models. No memory
- Tight coupling between sensors and actuation
- Only local sensing/decision-making
- Based on biology

Behaviors

- Direct mapping from sensing to actuation
- Basic modules
 - Move Forward
 - Wander
 - FollowHallway
 - AvoidObstacles
- Networks of sensing and acting modules (Finite State Automata)
- Subsumption Architecture

Subsumption Architecture

Potential Fields

- Treat robot as particle
- Environment generates potential field vectors
- Direct robot at each point
- Magnitude changes with distance

From UPenn

From McGill

Attractive

Repulsive

Tangential

Potential Fields

- Obstacle Avoidance Add repulsive forces around objects
- Wander Add random field
- Follow Hallway Two perpendicular forces and uniform force

• Problems with local minima

• Require significant domain knowledge

Upcoming

- Next time: Tracking/Data Fusion
 - Kalman Filters
 - Extended Kalman Filters
 - Bayesian Filters
 - Particle Filters
- Later:
 - Optimal Control (Bellman, MDPs)
 - Adaptive Control
 - Probabilistic Robotics
 - Localization, Mapping