CS 545 – Optimal Control

- Optimal Control
- Definitions
- Markov Decision Processes

Additional Readings

- *Probabilistic Robotics* Thrun, Burgard, Fox
- Reinforcement Learning: A Survey Kaelbling, Littman, Moore (1995)
- Planning and Acting in Partially Observable Stochastic Domains – Kaelbling, Littman, Cassandra (1998)

Decision-making with Uncertainty

- Before: Addressed uncertainty in robot motion.
 - Kalman Filters
 - Particle Filters
 - Methods for State Estimation (Tracking)
- What about for control?
- How do I know what to do if I don't know where I am and what's going to happen?!

Scenarios

- Industrial robot arm has to pick up pieces which could show up in any orientation
- Mobile robot has to follow shorter, more dangerous route (hallway), or longer, safer router
- Robot arm needs to maneuver through potentially tight area

Navigation Example

Which way is better?

Markov Property

- Markov Property Conditional probability of future states only depends on current state
 - Don't need history to make decisions (First-order Markov model)
- *n*th-order Markov model— need history from *n* time steps in past
- Can convert any problem to first order Markov model

- $S = \{s_0, s_1, ..., s_n\}$ set of states
- $A = \{a_0, a_1, \dots, a_m\}$ set of **stochastic** actions
- T(s,a,s') transition function P(s'|s,a) $P(s_{t+1} = s'|s_t = s, a_t = a)$
- $R(s, a): S \times A \rightarrow \mathbb{R}$ reward function
- γ discount factor
- π policy: $\pi(s) \rightarrow a$

T(s	(s, a_0, s')	s'		0
		s_0	s_1	s_2
	s_0	0.2	0.8	0.0
	s_1	0.0	0.0	1.0
5	s_2	1.0	0.0	0.0

T(.	$s, a_1, s')$	s'		
		s_0	s_1	s_2
1 a	s_0	0.0	0.0	1.0
	s_1	0.4	0.0	0.6
2	s_2	1.0	0.0	0.0

	$R(s, a_0)$	$R(s, a_1)$
s_0	4	2
s_1	5	7
s_2	10	10

Discount Factor

- $0 \le \gamma < 1$
- Keeps the total reward finite
- Necessary for planning with infinite horizon
- Idea: Rewards **now** better than rewards **later**
- Total Reward = $r_1 + \gamma r_2 + \gamma^2 r_3 + \dots$

Models of Optimal Control

- What are we trying to optimize?
- Finite Horizon for *h* steps

$$E(\sum_{t=0}^{h} r_t)$$

• Infinite Horizon

$$E(\sum_{t=0}^{\infty}\gamma^{t}r_{t})$$

- Goal: Find a policy which maximizes total reward
- Solution is set of simultaneous equations

• $\pi(s) = argmax_a[R(s,a) + \gamma(\sum_{s' \in S} T(s,a,s')V^*(s'))]$

Value Iteration

- Dynamic programming approach to estimate the optimal value function
- Recursively calculate the value of each state
- Use estimate of value function at iteration n to calculate new estimate at iteration n+1
- Infinite discounted horizon
- Q(s,a) value of taking action a in state s

– Take a now, then follow π after that

Value Iteration

Initialize V(s) # Usual random or uniform Repeat until $|V_n - V_{n-1}| < \epsilon \leftarrow$ **Bellman Residual** Foreach $s \in S$ Foreach $a \in A$ $Q_n(s, a) = R(s, a) + \gamma(\sum_{s' \in S} T(s, a, s')V_{n-1}(s'))$ $V_n(s) = \max_a Q_n(s,a)$ done Bellman backup done done

Value Iteration

- $\pi(s) = argmax_a[R(s,a) + \gamma(\sum_{s' \in S} T(s,a,s')V(s'))]$
- Policy is **stationary** and **time independent**
- Can use most recent estimates
 - If a state has already been updated, use most recent estimate
- Each iteration: quadratic in number of states, linear in number of actions
- # of iterations: Polynomial in $\frac{1}{1-\nu}$
- CAN BE SLOW

$\Gamma(s$	$s, a_0, s')$	s'		
		s_0	s_1	s_2
	s_0	0.2	0.8	0.0
3	s_1	0.0	0.0	1.0
	s_2	1.0	0.0	0.0

T(:	$s, a_1, s')$	s'		
		s_0	s_1	s_2
	s_0	0.0	0.0	1.0
0	s_1	0.4	0.0	0.6
5	s_2	1.0	0.0	0.0

	$R(s, a_0)$	$R(s,a_1)$
s_0	4	2
s_1	5	7
s_2	10	10

	a0	a1	V(s)
SO	0	0	0
S1	0	0	0
S2	0	0	0

$T(s, a_0, s')$		s'		
		s_0	s_1	s_2
	s_0	0.2	0.8	0.0
	s_1	0.0	0.0	1.0
S -	s_2	1.0	0.0	0.0

T(s	(a_1, s')	s'		
		s_0	s_1	s_2
	s_0	0.0	0.0	1.0
	s_1	0.4	0.0	0.6
5	S_2	1.0	0.0	0.0

	$R(s, a_0)$	$R(s,a_1)$
s_0	4	2
s_1	5	7
s_2	10	10

	a0	a1	V(s)
SO	4	2	4
S1	5	7	7
S2	10	10	10

$Q(s_0, a_0)$	() = 4 + 0.9	(0.2 * 0 + 0.8)	3 * 0 + 0 *	0) = 4
$Q(s_0, a_1)$) = 2 + 0.9	(0.0 * 0 + 0.0)) * 0 + 1.0	* 0) = 2
$Q(s_1, a_0)$) = 5 + 0.9	(0.0 * 0 + 0.0)) * 0 + 1.0	* 0) = 5
$Q(s_1, a_1)$) = 7 + 0.96	(0.4 * 0 + 0.0)	* 0 + 0.6	* 0) = 7
$Q(s_2, a_0)$	() = 10 + 0.9	9(1.0 * 0 + 0.0)	.0 * 0 + 0 *	* 0) = 10
$Q(s_2, a_1)$) = 10 + 0.9	9(1.0 * 0 + 0.0)	.0 * 0 + 0 *	* 0) = 10

$T(s, a_0, s')$		s'		
		s_0	s_1	s_2
	s_0	0.2	0.8	0.0
s	s_1	0.0	0.0	1.0
	s_2	1.0	0.0	0.0

$T(s, a_1, s')$		s'		
		s_0	s_1	s_2
	s_0	0.0	0.0	1.0
	s_1	0.4	0.0	0.6
s	82	1.0	0.0	0.0

	$R(s, a_0)$	$R(s,a_1)$
s_0	4	2
s_1	5	7
s_2	10	10

	a0	a1	V(s)
SO	5.22	11	11
S1	14	17.9	17.9
S2	13.6	13.6	13.6

 $\begin{aligned} Q(s_0, a_0) &= 4 + 0.9(0.2 * 4 + 0.8 * 7 + 0 * 10) = 5.22 \\ Q(s_0, a_1) &= 2 + 0.9(0.0 * 4 + 0.0 * 7 + 1.0 * 10) = 11 \\ Q(s_1, a_0) &= 5 + 0.9(0.0 * 4 + 0.0 * 7 + 1.0 * 10) = 14 \\ Q(s_1, a_1) &= 7 + 0.9(0.4 * 4 + 0.0 * 7 + 0.6 * 10) = 17.98 \\ Q(s_2, a_0) &= 10 + 0.9(1.0 * 4 + 0.0 * 7 + 0 * 10) = 13.6 \\ Q(s_2, a_1) &= 10 + 0.9(1.0 * 4 + 0.0 * 7 + 0 * 10) = 13.6 \end{aligned}$

Policy Iteration

- Choose arbitrary policy, π'
- Repeat

 $\pi = \pi'$

Compute value function of π

 $V_{\pi}(s) = R(s,\pi(s)) + \gamma[\sum_{s'\in S} T(s,\pi(s),s')V_{\pi}(s')]$

Improve policy at each state

 $\pi'(s) = \operatorname{argmax}_a(R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V_{\pi}(s'))$

Until $\pi == \pi'$

Policy Update

MDP Navigation Policy

Arm

• Two-link robot arm with noisy movement

Arm – Discrete Representation

Arm – Discrete Representation

Applications in Robotics

- Good for navigation and control
- Only for low dimensional
 - Higher dimensions require learning, clustering,
- Compare against trajectory planning
- Can represent higher-level reasoning