
CS545— Lecture 20

� Adaptive Approaches

� Reinforcement Learning

� Model-free methods

� Model-based methods

� Control

� Model Reference Adaptive Control

� Self-Tuning Regulators

� Linear Regression

� http://robotics.usc.edu/~aatrash/cs545

Reinforcement Learning

� Assume world is MDP but we don’t have models. (Don’t

have T(s,a,s’) or R(s,a)

� Need to determine policy (and maybe model) through

execution

TD(λλλλ)

� Estimate value function

� � � � � � � � � �� �� � � �

� TD(0) – only update current state

� TD(λ) – update states visited recently

� On-policy, model-free

Q-learning

� Estimate Q value

� �, � ← � �, � � ��� � � �� !" � ��, �� � ���, �#)

� Off-policy, model-free

� Will converge to optimal policy with enough data

Dyna

� Model-based method. Adapts model parameters and

policy during execution

1. Selection action based on Q(s,a). Get r and s’

2. Update estimates of T and R

3. Update policy at state s (backup)

1. � �, � � � �, � � ��∑ % �, �, �� � � #&"∈(

4. Perform k updates to random Q(s,a) pairs

Prioritized Sweeping/

Queue-Dyna

� Instead of performing backup randomly, use priorities

1. Remember old V value: �)*+ � ���#

2. Update state’s value

� � � max! �� �, � � �-% �, �, �� ����##
&"

3. Set state’s priority to 0

4. Compute Δ � |�)*+ � � � | (how much change)

5. Use ∆ to update priorities of predecessors

Δ ∗ % �, �, ��

Results

Exploration vs.

Exploitation

� Need to explore

� One approach: select random action with ε likelihood

� Bolztmann Exploration

1 � �

234 !

%

∑
234 !"

%!"∈5

� Decrease T over time

Application in Robotics

� Juggling devil-stick (Schaal 1994)

� Box-pushing (Mahadevan 1991)

� Multi-robot gathering (Mataric 1994)

� Elevator dispatching (Crites 1996)

The Adaptive Control

Problem

� Characterize the desired behavior of the closed loop

system

� Determine a suitable control law with adjustable

parameters

� Find a mechanism for adjusting the parameters

� Implement the control law

Model-Reference Adaptive

Control (Direct Learning)

� Performance is given to correspond to a particular reference
model

� E.g.

� Adjustment of controller is done directly

� E.g., adjust controller parameter by gradient descent

m˙ ̇ x + b˙ x + c = u

Controller Robot

Adjustment

MechanismModel

xdesired
u y

ydesired

adjustment

Model-Reference Adaptive

Control – Example

� Consider the generic control system

� For this example, make this an even simpler system

� Assume that f is unkown and needs to be estimated by a

learning process. Thus, we can formulated a control law:

� Where we replaced f with a simple linear function

&x = f x() + g x()u

&x = f x() + u

u = − f̂ x() + &xd − k x − xd()

= −x θ̂ + &xd − k x − xd()

Model-Reference Adaptive

Control – Example

� The goal of model-reference adaptive control is to adjust

the open parameter and the control law such that the

system is ALWAYS stable

� The system dynamics are now

� Define errors

� Thus:

&x = x θ − x θ̂ + &xd − k x − xd()

&x = x %θ + &xd + ke

0 = x %θ + &e + ke

&e = −x %θ − ke

e = xd − x

%θ = θ − θ̂

Model-Reference Adaptive

Control – Example

� Define a Lyapunov function

� Thus, choose:

V =
1

2
e2 +

1

2
%θ Γ−1 %θ

&V = e&e + %θ Γ−1 %&θ

= e&e − %θ Γ−1 &̂
θ

= e −x %θ − ke() − %θ Γ−1 &̂
θ

= −ex %θ − ke
2 − %θ Γ−1 &̂

θ

 −ex %θ − %θ Γ−1 &̂
θ = 0

Model-Reference Adaptive

Control – Example

� Thus:

� I.e., the guaranteed stable parameter adapation law is

−ex %θ − %θ Γ−1 &̂
θ = 0

%θ −ex − Γ−1 &̂
θ() = 0

&̂
θ = −Γex

&̂
θ = −Γex

Self-tuning Regulators (Indirect
Learning)

� Controller is redesigned based on some estimated parameters

� “certainty equivalence principle”

� E.g., LQR controller is redesigned based on estimated model

� This corresponds to an indirect update of the controller

Controller Robot

EstimationController

Design

xdesired
u y

adjustment

Specifications

Process

Parameters

Example: Estimate the

Robot Model From Data

� How to obtain data?

� Try “random” commands u, observe the state and change of state

� Don’t destroy the robot …

� How to estimate the model?

� Model is nonlinear

� Need nonlinear estimation techniques (e.g., neural networks)

� Model is linear

� Use linear regression or recursive least squares

� Essential ingredients of estimation:

� A cost criterion:

� Usually least squares

� Some adjustable parameter (“a data generating model”)

J =
1

2 i=1

N

∑ ti − yi()
2

Linear Regression for One

Output

� The data generating model

� Least Squares Cost Function

� Minimize Cost

y = ˜ w T ˜ x + w
0

+ ε = wTx + ε

where x = xT ,1[]
T

,w =
˜ w

w0



 


 
, E ε{ } = 0

J =
1

2
t − y()T

t − y() =
1

2
t − Xw()T

t − Xw()

where : t =

t1

t2

…

tn



















, X =

x1

T

x2

T

…

xn

T



















∂J

∂w
= 0 =

∂ J

∂w

1

2
t − Xw()

T
t − Xw()





= − t − Xw()
T

X

= −tT X + Xw()
T

X = −tT X + wT XT X

thus : tT X = wT XT X or XTt = XT X w

result : w = XT X()
−1

XTt-1

Physical Interpretation of Least

Squares

– all springs have the same spring constant

– points far away generate more “force” (danger of outliers)

– springs are vertical

– solution is the minimum energy solution achieved by the springs

