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e Reading Assignment for Next Class
See http://lwww-clmc.usc.edu/~cs545



The Plant (Robot)

Continuous Systems

u R Robot kR [ X
Dynamics
Inputs Outputs
(Commands) Robot (Plant) (States)
Discrete Systems
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Inputs Outputs
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The Plant (Robot) Model

e Continuous Systems
x = f(x,u,z) «— System dynamics

= 9 ’t — .
y=gku.) Output equations

e Discrete Systems
Xn+1 =f(Xn,un,n)

n

y =g(x”,u”,n)

e Note:

If time dependency exists: “time variant” or “nonstationary” or
“nonautonomous” system

If time dependency does not exist: “time invariant” or “stationary” or
“autonomous” system



Gravity g
e Assumption:
Point mass m )
No friction 10 = —mglsin (9) +7T
External torque motor 5 -
ml 0 =—mglsin(0)+71

é = —§81n(9)+ Tz
[ ml



The Control Policy
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Robot

Policy
Desired 3
Behavior

e All what Robotics (Control Theory, Al(?)) is about is to find a “decision
making process” that does the right thing at the right time!

u=mn(x,o,t)
Where a denotes a set of parameters in the policy

e The desired behavior is usually:

An external reward
An optimization function
An explicit desired trajectory



Two Major Control
Strategies

Open Loop Control

Desired

Behavior - u

Robot

u=nx,o,t)="n(o,t)

Closed Loop Control

Desired

Robot

Behavior — u

u=mn(x,o,t)



Types of Feedback Control

Feedback Control

Desired

Behavior Nonlinear u X
— —_ I
Controller (Policy) Robot

u="nx,o,t)

Negative Feedback Control

Xdesired Feedback Utb X u= TC(X — X (04 t)
"'+ﬁ) ™ Controller »| Robot I ' des >

Neg. Feedback & Feedforward Control

j»-_l' U =T, (X=X ,001) + T (X, 052)
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Negative Feedback Control

e Mostly based one linear control (i.e.,the control policy is
a linear function)
Proportional Control (“Position Error”)

u, = n(x —x,,,o,t) =K, (x, (1)—x(1))

Derivative Control (“Damping”)

u, = n(x —x,,,0,t) =K, (X, ()—x(t))

Integral Control (“Steady State Error”)

Note: Usually only based on position
errors

u,(N=K, [ (X —x(1))dt



Pendulum with PD Control

T

9=—§sin(9)+

ml*

variable substitution:

x, =0, x,=6

then

. —_8 t ' _ 8. |

X, = lsm(x2)+ml2 or L)-Clj: ls1n(x2) +T[/nlz)
X, =X, 2 Xy 0

e Assume the desired positios; =0, x, =x,
and a PD controller output: # =7 =k,(x, — x,) +k,(0—x,)

e At which position does the system come to rest (equilibrium)?

0= [‘? sin(x, )] +(kpl(x, = x,) +kp(0— xl))(%alzj

X, 0

= x,=0; kP(deXZ) ~Ssin(x,)=0
ml [




Pendulum with PD Control
(cont’d)

e How to find the equilibrium point?

Graphical
Approximation by linearization

e The linearized system:

(3'51)2 _TSm(xz) +7 %112 — ().CI]= T |+ 1ml2 or
x2 X 0 linearization x2 X O

' 8 8
()-Cl): —7)62 4T %,an _ 0 —7 (le‘FT(
La X, 0 1 0 )\

X =Ax+Bu
e Approximate equilibrium point:
k — k
xl :O; P(xd - x2) _gxzzo — x2 — de
ml [ k, + gml



Pendulum with PID Control

e Linearized System
: g
W NELS
Xy 1 0 N\*% 0
e The Integral Controller introduces a new state:

X, = k[(xd _xz)

e The new (linearized) system becomes;

_8
X, 0 [ 0 Xy %@lz
i l=[1 0 ofx |+ o0 u=1=ky(x,—x,)+k,(0-x,)+kx,

0 -k, 0

k.x,

This leads to an equilibrium point where all states are 0.



