
CS545—Contents III 
  Basic Linear Control Theory 

  The plant 
  The plant model 
  Continuous vs. discrete systems 
  The control policy 
  Desired Trajectories  
  Open Loop Control 
  Feedback Control 
  PID Control 
  Negative Feedback Control 
  Linear Systems 
  Blockdiagrams 

  Reading Assignment for Next Class 
  See http://www-clmc.usc.edu/~cs545 
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The Plant (Robot) Model 
  Continuous Systems 

  Discrete Systems 

  Note: 
  If time dependency exists: “time variant”  or “nonstationary” or 

“nonautonomous” system 
  If time dependency does not exist: “time invariant” or “stationary” or 

“autonomous” system 

  

˙ x = f x,u,t( )
y = g x, u,t( )

  

xn+1 = f xn,un,n( )
yn =g xn,un,n( )

System dynamics

Output equations



Example: Pendulum 

  Assumption: 
  Point mass m 
  No friction 
  External torque motor 

m

l q

Motort

I ˙ ̇ θ = −mglsin θ( ) +τ

ml2 ˙ ̇ θ = −mglsin θ( ) +τ

˙ ̇ θ = − g
l

sin θ( ) + τ
ml2

Gravity g



The Control Policy 

  All what Robotics (Control Theory, AI(?)) is about is to find a “decision 
making process” that does the right thing at the right time! 

  Where a denotes a set of parameters in the policy 
  The desired behavior is usually: 

  An external reward 
  An optimization function 
  An explicit desired trajectory 

Robot
u x

Desired
Behavior

Policy

u = π x,α,t( )



Two Major Control 
Strategies 

u = π x,α,t( ) = π α ,t( )

u = π x,α,t( )



Types of Feedback Control 

u = π x,α,t( )

u = π x − xdes ,α,t( )

u = π fb x − x des ,α,t( ) + π ff xdes ,α ,t( )



Negative Feedback Control 
  Mostly based one linear control (i.e.,the control policy is 

a linear function) 
  Proportional Control (“Position Error”) 

  Derivative Control (“Damping”) 

  Integral Control (“Steady State Error”) 

uP = π x − x des ,α,t( ) =K P xdes t( )− x t( )( )

uD = π x − x des ,α,t( ) = KD ˙ x des t( )− ˙ x t( )( )

uI t( ) =KI xdes t( ) − x t( )( )
τ=0

τ=t

∫ dt

Note: Usually only based on position 
errors



Pendulum with PD Control 
˙ ̇ θ = − g

l
sin θ( ) + τ

ml2

variable substitution:

x1 = ˙ θ , x2 = θ
then

˙ x 1 = − g
l

sin x2( ) + τ
ml2

˙ x 2 = x1

 or 
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  Assume the desired position: 
and a PD controller output: 

  At which position does the system come to rest (equilibrium)?  

  x1 = 0, x2 = xd
u = τ = kP xd − x2( ) + kD 0 − x1( )

0 = − g
l

sin x2( )
x1
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⇒    x1 = 0;   kP xd − x2( )
ml2  − g

l
sin x2( ) = 0



Pendulum with PD Control 
(cont’d) 
  How to find the equilibrium point? 

  Graphical 
  Approximation by linearization 

  The linearized system: 

  Approximate equilibrium point: 
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Pendulum with PID Control 
  Linearized System 

  The Integral Controller introduces a new state: 

  The new (linearized) system becomes; 
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˙ x 3 = kI xd − x2( )

This leads to an equilibrium point where all states are 0.

u = τ = kP xd − x2( ) + kD 0 − x1( ) + kI x3
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