CS 545 Lecture II Actuators and Sensors

http://robotics.usc.edu/~aatrash/cs545

Actuators and Sensors

- Actuators
 - Servomotors
 - Transmission
 - Power
- Sensors
 - Proprioceptive
 - Exteroceptive
- Signal Processing

Actuators

- Pneumatic compressed air
 - Compressor transforms pneumatic energy into mechanic energy
 - Pistons, turbines
- Hydraulic compressed liquid
 - Converts hydraulic energy into mechanic energy
- Electric uses electricity

Desired Properties

- Low inertia
- High power-to-weight ratio
- High acceleration
- Robust to overload
- Wide velocity range (1 to 1000 revolutions/min)
- Position accuracy (1/1000 of a circle)
- Smooth motion (torque ripples, friction, stiction)

Pneumatic Motors

- Good
 - Light weight
 - Clean
 - Compliant
- Bad
 - Position error due to compression
 - Requires compressor
 - Not strong
- Not used as often as other motors

Hydraulic Motors

- Good
 - Light
 - Robust to burnout
 - Fewer problems with heat/lubrication
 - Very strong
 - Low speed/high torque
- Bad
 - Requires heavy off-board pump
 - Messy (pollution)
 - Expensive
 - Difficult to miniaturize
 - Can be susceptible to temperature of fluid
- Used in domains with heavy load

Electric motors

- Good
 - High speed/low torque
 - Cheap
 - Readily available
 - Small
 - Electricity everywhere
 - More predictable
- Bad
 - Heavy
 - Requires amplifier
 - Problems with burnout
- Used in small/mid-size applications
- Brushed/Brushless motors

Servo Motors

- Need to move motor to specific position
- Servo motors are adapted DC motors
 - Gear reduction
 - Position sensor (potentiometer)
 - Electronic controller
- Range usually 180+ degrees

- May not always be able to place motor **at** joint
- Move power from the motor to joint

Transmission Types

- Spur Gears basic gear
 - Dish/cylinder with teeth
 - Allows power conversion through ratio of gears
- Lead Screws
 - Used for prismatic joints
- Belts/Chains/Pulleys
 - Locate the motor remotely from the joint
- Direct Drive

Transmission Properties

- Allows for conversion of output
 - Velocity and torque through gearing
 - Power = Speed * Torque
 - Convert rotational into translational
 - Differential gears
- Backlash spacing between contacts
 - Room for lubrication (oil), error in manufacturing. deflection from load, thermal expansion
- Properties
 - Impact of backlash
 - Impact of friction
 - Backdrivable (moving motor moves input)
 - Transmission ratios up to 1:300 or more

Gears

Barrett's Patented WAMTM Cable-Differential

Gear Fundamentals

• The force F at the edge of a gear of radius r is given by:

F = t / r

• The linear speed v at the edge of a gear of radius r is given by:

Combining Gears

Given $\omega_{_1}$, what is $\omega_{_2}$?

Given t_1 , what is t_2 ?

Combining Gears

• Meshing gears have equal linear speeds:

 $v_1 = v_2$

• Thus the output speed is:

 $\omega_2 = (r_1 / r_2) \omega_1$

• And the output torque is: $t_2 = (r_2 / r_1) t_1$

• r₂ / r₁ is known as the *gear ratio*

Examples

• Gearing down:

$$r_1 = 1, r_2 = 2$$

- 2:1 gear ratio doubles the torque and halves speed
- Gearing up:

$$r_1 = 2, r_2 = 1$$

• 1:2 gear ratio halves torque and doubles speed

Gear Stages

- Usually it is not possible to achieve sufficient a gear ratio with a single pair of gears
- Gears can be arranged *in stages*
- The total gear ratio is the product of gear ratios for each stage
 - E.g.: 4:1 x 4:1 = 16:1

Power

- Power Supplies
 - Electric
 - Transformer
 - Hydraulic/Pneumatic
 - Gear or piston pump compresses medium
 - High pressures
- Power Amplifier
 - Regulars amount of power provided by power supply
 - Electric
 - Usually current control
 - Pulse Width Modulation
 - Hydraulic/Pneumatic
 - Electro-hydraulic (pneumatic) valves

Pulse Width Modulation

- Control analog device with digital controller
- Apply digital signal with varying frequency to generate analog signal
- 9V battery, 50 ms, 10 HZ = 4.5 V battery

Hydraulic Valves

Sensors

- Types
 - Proprioceptive (internal state)
 - Position, joint angles
 - Velocity
 - Acceleration
 - Exteroceptive (external state)
 - Force
 - Tactile
 - Proximity, range
 - Vision
 - Application specific (sound, humidity, smoke, temperature)
 - Passive (receive energy)
 - Vision, audio
 - Active (emit energy)
 - Sonar, ladar, structured light
- Goal: Extract information characterizing interaction of robot with objects in environment
- Robot as intelligent connection between perception and action

Examples of sensors

- light level -> photo cells, cameras
- sound level -> microphones
- strain -> strain gauges
- rotation -> encoders
- temperature -> thermometer
- gravity -> inclinometers
- acceleration -> accelerometers
- acceleration -> rate gyroscopes

Levels of Processing

- Determine position of switch from voltage in circuit => electronics
- Using a microphone, separate voice from noise => signal processing
- Using a camera, find people in the image and recognize "persons of interest" => computation

Potentiometer

- Output voltage based on rotation
- Good
 - Cheap
 - Small
 - Linear and rotary version
 - Absolute values (continuous)
- Cons
 - Noisy
 - Mechanical interaction (siphons power)
 - Requires analog to digital conversion
 - Medium resolution (12-16 bit)

Potentiometer

Potentiometer

Standard Encoder/Potentiometer Position - Degrees

Potentiometer Uses

- Position:
 - Joint angle
 - Shaft angle
 - Linear travel
- Proximity:
 - Spring-loaded "whiskers"

Encoders

- Count rotations
- Good
 - High resolution (expensive)
 - Low resolution (cheap)
 - Very clean data
 - No A/D conversion
- Bad
 - Expensive or low resolution
 - Bulky
 - Special hardware needed for counting (Quadrature Board)
 - Usual incremental (not absolute. i.e. Continuous)

Optical Encoder Examples

Quadrature

• Required to keep count

Absolute vs. Incremental Encoder

j

FIGURE 8.8 Schematic representation of an incremental encoder.

Digital Position Encoder

Fig 3 4-Bit binary code absolute encoder disk track patterns

Velocity Encoders

- Analog velocity encoders:
 - Electrical: back-EMF
- Digital velocity encoders:
 - Optical: optosensor + coded disk

Back-EMF

- idea: rotating motor yields induced voltage (dynamo effect)
- spin the motor (e.g., PWM), then stop applying driving current for a short while, and measure voltage. Can then infer speed.

75% Duty Cycle with High Load Simulated Scope

http://www.acroname.com/robotics/ info/articles/back-emf/back-emf.html

Odometry for Wheeled Robots

- Common application: odometry for wheeled robots
- Integrate velocities from each wheel through kinematic model
- Estimate robot position (x, y) and orientation θ
- More details later

Force Sensors

• Strain gauge

- Wire which changes resistance when deformed
- Measured using Wheat-Stone bridge

568 · Sensors, Measurement and Perception

(d)

- Properties
 - Noisy
 - Requires special hardware (material that "stretches")
 - Requires careful mounting techniques
 - Multiple strains needed to make sensor resistant to noise and temperature (see previous layouts)

- Measures distance to object in a direction
- Used for obstacle avoidance, mapping and localization, object recognition

Sonar

- SOund NAvigation and Ranging
- Measure time of flight of acoustic wave
- Mobile and aquatic robots
- Low cost, light, low power, low computation
 - Sometimes only viable option (small robots)
- Very noisy
 - Several failure situations

Specularity v. Diffusion

- Surfaces generate two forms of reflection:
 - Specular: angle of incidence = angle of reflection
 - Diffuse: energy absorbed and reemitted at a broad range of angles
- Specular reflections are strong, but unlikely to return to detector
- Diffuse reflections are weak, but likely to return to detector

Sonar

Uses of Sonar Sensors

- In spite of specular reflection, ultrasound/sonar sensors are used very successfully
- Robotics applications:
 - obstacle avoidance
 - mapping

Laser

- Similar to sonar
- Uses beams of (non-visible) light
- Narrow beams
 - More accurate
 - More resolution
- Time of flight of light
- Expensive

Vision (Cameras)

- CCD Charge Couple Device
- CMOS Complementary Metal Oxide Semiconductor
- Camera
 - Lens which focuses light onto image plane (CCD or CMOS)
- Versatile, but requires specialized computation

Data Filtering

- Noisy data needs to be processed before used to control robot
- Analog filtering
 - Requires special hardware
- Digital filtering
 - Can be done with computer

Digital Filtering

• Mostly done with linear filtering

$$y_n = \sum_{k=0}^{M} c_k x_{n-k} + \sum_{j=1}^{N} d_j y_{n-j}$$

- "Smoothing" (Convolution)
- Two special cases
 - Finite Impulse Response Filter (FIR)
 - N=0, no recursive inputs
 - More easy to design
 - More robust
 - Infinite Impulse Response Filter
 - N!=0
 - Can be unstable
 - More complex design
 - Less robust
 - Better filtering properties

Digital Filtering

- Typical Filters
 - Butterworth (MATLAB: "butter")
 - Chebyshev (MATLAB: "cheby1" "cheby2")
 - Elliptic (MATLAB: "ellip")