CS 545 Lecture 6
 Coordinate Transformations

- Position
- Rotation
- Composition of Rotations
- Rotations around Arbitrary Axis
- Euler Angles
- Homogeneous Transformations
http://robotics.usc.edu/~aatrash/cs545

Introduction

- Robots composed of links and joints
- Possibly with manipulator at end
- Need to determine position of tip as function of joints (Kinematics)
- Select joint angles to achieve configuration (Inverse Kinematics)
- Series of pendulums

Position

FIGURE 2.1
Position and orientation of a rigid body.

- Rigid body defined by position and orientation relative to reference frame ($\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$) where $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ are unit vectors.
- Position:

$$
\boldsymbol{o}^{\prime}=o_{x}^{\prime} \boldsymbol{x}+o_{y}^{\prime} \boldsymbol{y}+o_{z}^{\prime} z, \quad o^{\prime}=\left[\begin{array}{c}
o_{x}^{\prime} \\
o_{y}^{\prime} \\
o_{z}^{\prime}
\end{array}\right]
$$

- Orientation: Attach frame to object ($x^{\prime}, y^{\prime}, z^{\prime}$) (see Figure above)

Rotation

- Rotation defined between the two frames

$$
\begin{aligned}
& x^{\prime}=x_{x}^{\prime} x+x_{y}^{\prime} y+x_{z}^{\prime} z \\
& y^{\prime}=y_{x}^{\prime} x+y_{y}^{\prime} y+y_{z}^{\prime} z \\
& z^{\prime}=z_{x}^{\prime} x+z_{y}^{\prime} y+z_{z}^{\prime} z .
\end{aligned}
$$

- Rotation Matrix

$$
\boldsymbol{R}=\left[\begin{array}{ccc}
x^{\prime} & \boldsymbol{y}^{\prime} & \boldsymbol{z}^{\prime} \\
& &
\end{array}\right]=\left[\begin{array}{lll}
x_{x}^{\prime} & y_{x}^{\prime} & z_{x}^{\prime} \\
x_{y}^{\prime} & y_{y}^{\prime} & z_{y}^{\prime} \\
x_{z}^{\prime} & y_{z}^{\prime} & z_{z}^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
x^{\prime T} \boldsymbol{x} & \boldsymbol{y}^{\prime T} \boldsymbol{x} & z^{\prime T} \boldsymbol{x} \\
\boldsymbol{x}^{T} \boldsymbol{y} & \boldsymbol{y}^{T} \boldsymbol{y} & \boldsymbol{z}^{T} \boldsymbol{y} \\
\boldsymbol{x}^{T} \boldsymbol{z} & \boldsymbol{y}^{T} \boldsymbol{z} & \boldsymbol{z}^{\prime T} \boldsymbol{z}
\end{array}\right]
$$

Elementary Rotations

- Assume reference and rotated frame share origin (relaxed later)
- Rotations around one of the coordinate axis.
- Rotating around z-axis:

$$
x^{\prime}=\left[\begin{array}{c}
\cos \alpha \\
\sin \alpha \\
0
\end{array}\right] \quad y^{\prime}=\left[\begin{array}{c}
-\sin \alpha \\
\cos \alpha \\
0
\end{array}\right] \quad z^{\prime}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Elementary Rotations

$$
\begin{aligned}
& \boldsymbol{R}_{z}(\alpha)= {\left[\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right] } \\
& \boldsymbol{R}_{y}(\beta)= {\left[\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right] } \\
& \boldsymbol{R}_{x}(\gamma)= {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \gamma & -\sin \gamma \\
0 & \sin \gamma & \cos \gamma
\end{array}\right] } \\
& \boldsymbol{R}_{k}(-\vartheta)=\boldsymbol{R}_{k}^{T}(\vartheta)
\end{aligned}
$$

Representation of Vectors

- Point in $o^{\prime}: \quad p^{p^{\prime}}=\left[\begin{array}{l}p_{i}^{p_{i}} \\ p_{z}^{\prime} \\ p_{z}^{\prime}\end{array}\right]$
- What does that point look like in o?
- Let R be the rotation between o and o '.
- Transformation: $\quad p=R p^{\prime} \quad p=\left[\begin{array}{l}p_{p_{1}} \\ p_{y} \\ p_{y}\end{array}\right]$
- Transform back: $p^{p^{\prime}=\boldsymbol{R}^{T} p}$

Example

FIGURE 2.3
Representation of a point P in two different coordinate frames.

Composition of Rotational Matrices

- Consider several frames
- \boldsymbol{R}_{i}^{j} is transform from frame i to frame j

$$
\begin{aligned}
p^{1} & =R_{2}^{1} p^{2} \\
p^{0} & =R_{1}^{0} p^{1} \\
p^{0} & =R_{2}^{0} p^{2}
\end{aligned}
$$

- Can express rotation as series of partial rotations:

$$
R_{2}^{0}=R_{1}^{0} R_{2}^{1}
$$

Composition of Rotational Matrices

- Order matters!!!

Rotation around Arbitrary Axis

- $r=\left[\begin{array}{lll}r_{x} & r_{y} & r_{z}\end{array}\right]^{T}$: unit vector
- Want to rotate by ϑ

1. Align r with z by rotating around z and y
2. Rotate ϑ around z
3. Realign with original direction

$$
\boldsymbol{R}_{r}(\vartheta)=\boldsymbol{R}_{z}(\alpha) \boldsymbol{R}_{y}(\beta) \boldsymbol{R}_{z}(\vartheta) \boldsymbol{R}_{y}(-\beta) \boldsymbol{R}_{z}(-\alpha)
$$

Rotation around Arbitrary Axis

Rotation around Arbitrary Axis

- Remove dependency on α and β :

$$
\sin \alpha=\frac{r_{y}}{\sqrt{r_{x}^{2}+r_{y}^{2}}} \quad \cos \alpha=\frac{r_{x}}{\sqrt{r_{x}^{2}+r_{y}^{2}}}
$$

$$
\sin \beta=\sqrt{r_{x}^{2}+r_{y}^{2}} \quad \cos \beta=r_{z}
$$

- Thus, final transformation:

$$
\boldsymbol{R}_{r}(\vartheta)=\left[\begin{array}{ccc}
r_{x}^{2}\left(1-c_{\vartheta}\right)+c_{\vartheta} & r_{x} r_{y}\left(1-c_{\vartheta}\right)-r_{z} s_{\vartheta} & r_{x} r_{z}\left(1-c_{\vartheta}\right)+r_{y} s_{\vartheta} \\
r_{x} r_{y}\left(1-c_{\vartheta}\right)+r_{z} s_{\vartheta} & r_{y}^{2}\left(1-c_{\vartheta}\right)+c_{\vartheta} & r_{y} r_{z}\left(1-c_{\vartheta}\right)-r_{x} s_{\vartheta} \\
r_{x} r_{z}\left(1-c_{\vartheta}\right)-r_{y} s_{\vartheta} & r_{y} r_{z}\left(1-c_{\vartheta}\right)+r_{x} s_{\vartheta} & r_{z}^{2}\left(1-c_{\vartheta}\right)+c_{\vartheta}
\end{array}\right]
$$

Rotation around Arbitrary Axis

- Inverse: Given rotation matrix

Find

$$
\begin{aligned}
& \boldsymbol{R}=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right] \\
& \vartheta=\cos ^{-1}\left(\frac{r_{11}+r_{22}+r_{33} \cdot 1}{2}\right)
\end{aligned}
$$

$$
r=\frac{1}{2 \sin \vartheta}\left[\begin{array}{l}
r_{32}-r_{23} \\
r_{13}-r_{31} \\
r_{21}-r_{12}
\end{array}\right],
$$

With constraint:

$$
r_{x}^{2}+r_{y}^{2}+r_{z}^{2}=1
$$

Euler Angles

- Last representation had 9 variables, although 6 constraints due to orthogonality.
- Really only 3 free parameters
- Want a more minimal representation
- Use Euler angles
- Let $(\varphi, \vartheta, \psi)$ be a given set of Euler angles

1. Rotate φ around z axis $\boldsymbol{R}_{z}(\varphi)$
2. Rotate ϑ around y^{\prime} axis $\boldsymbol{R}_{y^{\prime}}(\vartheta)$
3. Rotate φ around $z^{\prime \prime}$ axis $\quad \boldsymbol{R}_{z^{\prime \prime}}(\psi)$

- Example of ZYZ Euler Angles. 12 Combinations

Euler Angles

$$
\begin{aligned}
\boldsymbol{R}_{\mathrm{EUL}} & =\boldsymbol{R}_{z}(\varphi) \boldsymbol{R}_{y^{\prime}}(\vartheta) \boldsymbol{R}_{\boldsymbol{z}^{\prime \prime}}(\psi) \\
& =\left[\begin{array}{ccc}
c_{\varphi} c_{\vartheta} c_{\psi}-s_{\varphi} s_{\psi} & -c_{\varphi} c_{\vartheta} s_{\psi}-s_{\varphi} c_{\psi} & c_{\psi} s_{\vartheta} \\
s_{\varphi} c_{\vartheta} c_{\psi}+c_{\varphi} s_{\psi} & -s_{\varphi} c_{\vartheta} s_{\psi}+c_{\varphi} c_{\psi} & s_{\varphi} s_{\vartheta} \\
-s_{\vartheta} c_{\psi} & s_{\vartheta} s_{\psi} & c_{\vartheta}
\end{array}\right]
\end{aligned}
$$

Euler Angles

FIGURE 2.9
Representation of Euler angles ZYZ.

Homogeneous Transforms

- So far, only rotations. What about translations?

$$
p^{0}=o_{1}^{o}+R_{1}^{0} p^{1}
$$

- Use homogeneous transformation matrix

$$
\tilde{p}=\left[\begin{array}{l}
p \\
1
\end{array}\right] \quad A_{1}^{0}=\left[\begin{array}{cc}
R_{1}^{0} & o_{1}^{0} \\
0^{T} & 1
\end{array}\right]
$$

Homogeneous Transforms

