

CS545—Contents IX

- Inverse Kinematics
 - Analytical Methods
 - Iterative (Differential) Methods
 - Geometric and Analytical Jacobian
 - Jacobian Transpose Method
 - Pseudo-Inverse
 - Pseudo-Inverse with Optimization
 - Extended Jacobian Method

• Reading Assignment for Next Class

See http://www-clmc.usc.edu/~cs545

The Inverse Kinematics Problem

• Direct Kinematics

$$\mathbf{x} = f(\boldsymbol{\theta})$$

Inverse Kinematics

$$\boldsymbol{\theta} = f^{-1}(\mathbf{x})$$

- Possible Problems of Inverse Kinematics
 - Multiple solutions
 - Infinitely many solutions
 - No solutions
 - No closed-form (analytical solution)

Analytical (Algebraic) Solutions

- Analytically invert the direct kinematics equations and enumerate all solution branches
 - Note: this only works if the number of constraints is the same as the number of degrees-of-freedom of the robot
 - What if not?
 - Iterative solutions
 - Invent artificial constraints
- Examples
 - 2DOF arm
 - See S&S textbook 2.11 ff

Analytical Inverse Kinematics of a 2 DOF Arm

 l_1

е

Х

 $l = \sqrt{x^{2} + y^{2}}$ $l_{2}^{2} = l_{1}^{2} + l^{2} - 2l_{1}l\cos\gamma$ $\Rightarrow \gamma = \arccos\left(\frac{l^{2} + l_{1}^{2} - l_{2}^{2}}{2l_{1}l}\right)$ $\frac{y}{x} = \tan\varepsilon \quad \Rightarrow \quad \theta_{1} = \arctan\frac{y}{x} - \gamma$ $\theta_{2} = \arctan\left(\frac{y - l_{1}\sin\theta}{x - l_{1}\cos\theta_{1}}\right) - \theta_{1}$

 $x = l_1 \cos \theta_1 + l_2 \cos \left(\theta_1 + \theta_2 \right)$

 $y = l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \theta_2)$

У

Iterative Solutions of Inverse Kinematics

$$\dot{\theta} = J(\theta)^{\#} \dot{\mathbf{x}}$$

• Properties

- Only holds for high sampling rates or low Cartesian velocities
- "a local solution" that may be "globally" inappropriate
- Problems with singular postures
- Can be used in two ways:
 - As an instantaneous solutions of "which way to take "
 - As an "batch" iteration method to find the correct configuration at a target

Essential in Resolved Motion Rate Methods: The Jacobian

• In general, the Jacobian (for Cartesian positions and orientations) has the following form (geometrical

Jacobian):

$$J(\theta) = \begin{pmatrix} j_{P_{1}} & \dots & j_{P_{n}} \\ \dots & \dots & j_{O_{n}} \end{pmatrix}$$
where
$$\begin{bmatrix} j_{P_{i}} \\ j_{O_{i}} \end{bmatrix} = \begin{cases} \begin{bmatrix} z_{i-1} \\ 0 \end{bmatrix} \text{ for a prismatic joint} \\ \begin{bmatrix} z_{i-1} \times (\mathbf{p} - \mathbf{p}_{i-1}) \\ z_{i-1} \end{bmatrix} \text{ for a revolute joint}$$

 \mathbf{p}_i is the vector from the origin of the world coordinate system to the origin of the i-th link coordinate system, p is the vector from the origin to the endeffector end, and z is the i-th joint axis (p.72 S&S)

The Jacobian Transpose Method

$$\Delta \boldsymbol{\theta} = \boldsymbol{\alpha} J^{T} \left(\boldsymbol{\theta} \right) \Delta \mathbf{x}$$

- Operating Principle:
 - Project difference vector Dx on those dimensions q which can reduce it the most
- Advantages:
 - Simple computation (numerically robust)
 - No matrix inversions
- Disadvantages:
 - Needs many iterations until convergence in certain configurations (e.g., Jacobian has very small coefficients)
 - Unpredictable joint configurations
 - Non conservative

Jacobian Transpose Derivation

Minimize cost function
$$F = \frac{1}{2} (\mathbf{x}_{target} - \mathbf{x})^T (\mathbf{x}_{target} - \mathbf{x})$$

$$= \frac{1}{2} (\mathbf{x}_{target} - f(\mathbf{\theta}))^T (\mathbf{x}_{target} - f(\mathbf{x}_{target} - f(\mathbf{x}_{ta$$

with respect to $\boldsymbol{\theta}$ by gradient descent:

$$\Delta \boldsymbol{\theta} = -\alpha \left(\frac{\partial F}{\partial \boldsymbol{\theta}} \right)^{T}$$
$$= \alpha \left(\left(\mathbf{x}_{target} - \mathbf{x} \right)^{T} \frac{\partial f(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right)^{T}$$
$$= \alpha J^{T} \left(\boldsymbol{\theta} \right) \left(\mathbf{x}_{target} - \mathbf{x} \right)$$
$$= \alpha J^{T} \left(\boldsymbol{\theta} \right) \Delta \mathbf{x}$$

Jacobian Transpose Geometric Intuition

The Pseudo Inverse Method

 $\Delta \boldsymbol{\theta} = \alpha J^{T}(\boldsymbol{\theta}) (J(\boldsymbol{\theta}) J^{T}(\boldsymbol{\theta}))^{-1} \Delta \mathbf{x} = J^{\#} \Delta \mathbf{x}$

- Operating Principle:
 - Shortest path in q-space
- Advantages:
 - Computationally fast (second order method)
- Disadvantages:
 - Matrix inversion necessary (numerical problems)
 - Unpredictable joint configurations
 - Non conservative

Pseudo Inverse Method Derivation

For a small step $\Delta \mathbf{x}$, minimize with repect to $\Delta \boldsymbol{\theta}$ the cost function:

$$F = \frac{1}{2} \Delta \boldsymbol{\theta}^T \Delta \boldsymbol{\theta} + \boldsymbol{\lambda}^T \left(\Delta \mathbf{x} - J(\boldsymbol{\theta}) \Delta \boldsymbol{\theta} \right)$$

where λ^{T} is a vector of Lagrange multipliers.

Solution:

(1)
$$\frac{\partial F}{\partial \lambda} = 0 \implies \Delta \mathbf{x} = J \Delta \mathbf{\theta}$$

(2) $\frac{\partial F}{\partial \Delta \mathbf{\theta}} = 0 \implies \Delta \mathbf{\theta} = J^T \lambda \implies J \Delta \mathbf{\theta} = J J^T \lambda$
 $\implies \lambda = (J J^T)^{-1} J \Delta \mathbf{\theta}$

insert (1) into (2):

(3)
$$\lambda = (JJ^T)^{-1} \Delta \mathbf{x}$$

insertion of (3) into (2) gives the final result:

$$\Delta \boldsymbol{\Theta} = J^T \boldsymbol{\lambda} = J^T \left(J J^T \right)^{-1} \Delta \mathbf{x}$$

Pseudo Inverse Geometric Intuition

Pseudo Inverse with explicit Optimization Criterion

$$\Delta \boldsymbol{\theta} = \alpha J^{\#} \Delta \mathbf{x} + (I - J^{\#} J) (\boldsymbol{\theta}_{O} - \boldsymbol{\theta})$$

- Operating Principle:
 - Optimization in null-space of Jacobian using a kinematic cost function
 - $F = g(\boldsymbol{\theta}), \quad e.g., F = \sum_{i=1}^{d} \left(\boldsymbol{\theta}_i \boldsymbol{\theta}_{i,0} \right)^2$

- Advantages:
 - Computationally fast
 - Explicit optimization criterion provides control over arm configurations
- Disadvantages:
 - Numerical problems at singularities
 - Non conservative

Pseudo Inverse Method & Optimization Derivation

For a small step $\Delta \mathbf{x}$, minimize with repect to $\Delta \boldsymbol{\theta}$ the cost function:

$$F = \frac{1}{2} \left(\Delta \boldsymbol{\theta} + \boldsymbol{\theta} - \boldsymbol{\theta}_{\mathbf{o}} \right)^{T} \left(\Delta \boldsymbol{\theta} + \boldsymbol{\theta} - \boldsymbol{\theta}_{\mathbf{o}} \right) + \boldsymbol{\lambda}^{T} \left(\Delta \mathbf{x} - J(\boldsymbol{\theta}) \Delta \boldsymbol{\theta} \right)$$

where λ^{T} is a vector of Lagrange multipliers. Solution:

(1)
$$\frac{\partial F}{\partial \lambda} = 0 \implies \Delta \mathbf{x} = J \Delta \theta$$

(2) $\frac{\partial F}{\partial \Delta \theta} = 0 \implies \Delta \theta = J^T \lambda - (\theta - \theta_0) \implies J \Delta \theta = J J^T \lambda - J (\theta - \theta_0)$
 $\implies \lambda = (J J^T)^{-1} J \Delta \theta + (J J^T)^{-1} J (\theta - \theta_0)$
insert (1) into (2):
(3) $\lambda = (J J^T)^{-1} \Delta \mathbf{x} + (J J^T)^{-1} J (\theta - \theta_0)$
insertion of (3) into (2) gives the final result:
 $\Delta \theta = J^T \lambda - (\theta - \theta_0) = J^T (J J^T)^{-1} \Delta \mathbf{x} + J^T (J J^T)^{-1} J (\theta - \theta_0) - (\theta - \theta_0)$
 $= J^\# \Delta \mathbf{x} + (I - J^\# J) (\theta_0 - \theta)$

The Extended Jacobian Method

 $\Delta \boldsymbol{\theta} = \alpha \left(J^{ext.}(\boldsymbol{\theta}) \right)^{-1} \Delta \mathbf{x}^{ext.}$

- Operating Principle:
 - Optimization in null-space of Jacobian using a kinematic cost function

$$F = g(\mathbf{\theta}), \quad e.g., F = \sum_{i=1}^{d} (\theta_i - \theta_{i,0})^2$$

- Advantages:
 - Computationally fast (second order method)
 - Explicit optimization criterion provides control over arm configurations
 - Numerically robust
 - Conservative
- Disadvantages:
 - Computationally expensive matrix inversion necessary (singular value decomposition)
 - Note: new and better ext. Jac. algorithms exist

Extended Jacobian Method Derivation

The forward kinematics $\mathbf{x} = f(\mathbf{0})$ is a mapping $\mathfrak{R}^n \to \mathfrak{R}^m$, e.g., from a *n*-dimensional joint space to a *m*-dimensional Cartesian space. The singular value decomposition of the Jacobian of this mapping is: $J(\mathbf{0}) = \mathbf{USV}^T$

The rows $[\mathbf{V}]_i$ whose corresponding entry in the diagonal matrix \mathbf{S} is zero are the vectors which span the Null space of $J(\mathbf{\Theta})$. There must be (at least) *n*-*m* such vectors $(n \ge m)$. Denote these vectors \mathbf{n}_i , $i \in [1, n-m]$. The goal of the extended Jacobian method is to augment the rank deficient Jacobian such that it becomes properly invertible. In order to do this, a cost function $F=g(\mathbf{\Theta})$ has to be defined which is to be minimized with respect to $\mathbf{\Theta}$ in the Null space. Minimization of F must always yield:

$$\frac{\partial F}{\partial \mathbf{\theta}} = \frac{\partial g}{\partial \mathbf{\theta}} = 0$$

Since we are only interested in zeroing the gradient in Null space, we project this gradient onto the Null space basis vectors:

$$G_i = \frac{\partial g}{\partial \mathbf{\theta}} \mathbf{n}$$

If all G_i equal zero, the cost function F is minimized in Null space. Thus we obtain the following set of equations which are to be fulfilled by the inverse kinematics solution:

$$\begin{pmatrix} f(\mathbf{\Theta}) \\ G_1 \\ \dots \\ G_{n-m} \end{pmatrix} = \begin{pmatrix} \mathbf{x} \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

For an incremental step $\Delta \mathbf{x}$, this system can be linearized:

$$\begin{pmatrix} J(\mathbf{\theta}) \\ \frac{\partial G_1}{\partial \mathbf{\theta}} \\ \dots \\ \frac{\partial G_{n-m}}{\partial \mathbf{\theta}} \end{pmatrix} \Delta \mathbf{\theta} = \begin{pmatrix} \Delta \mathbf{x} \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad or \quad J^{ext} \cdot \Delta \mathbf{\theta} = \Delta \mathbf{x}^{ext} .$$

The unique solution of these equations is: $\Delta \mathbf{\theta} = (J^{ext})^{-1} \Delta \mathbf{x}^{ext}$.

Extended Jacobian Geometric Intuition

