
CS545—Contents IX 
  Inverse Kinematics 

  Analytical Methods 
  Iterative (Differential) Methods 

  Geometric and Analytical Jacobian 
  Jacobian Transpose Method 
  Pseudo-Inverse 
  Pseudo-Inverse with Optimization 
  Extended Jacobian Method 

  Reading Assignment for Next Class 
  See http://www-clmc.usc.edu/~cs545 



The Inverse Kinematics 
Problem 
  Direct Kinematics 

  Inverse Kinematics 

  Possible Problems of Inverse Kinematics 
  Multiple solutions 
  Infinitely many solutions 
  No solutions 
  No closed-form (analytical solution) 

x = f θ( )

θ = f −1 x( )



Analytical (Algebraic) 
Solutions 
  Analytically invert the direct kinematics equations and 

enumerate all solution branches 
  Note: this only works if the number of constraints is the same as 

the number of degrees-of-freedom of the robot 
  What if not? 

  Iterative solutions 
  Invent artificial constraints 

  Examples 
  2DOF arm 
  See S&S textbook 2.11 ff 



Analytical Inverse Kinematics 
of a 2 DOF Arm 

  Inverse Kinematics: 

l1
 l2


x


y


e

x = l1 cosθ1 + l2 cos θ1 +θ2( )
y = l1 sinθ1 + l2 sin θ1 +θ2( )

l = x2 + y2

l2
2 = l1

2 + l2 − 2l1l cosγ

⇒γ = arccos l2 + l1
2 − l2

2

2l1l
⎛
⎝⎜

⎞
⎠⎟

y
x
= tanε    ⇒   θ1 = arctan y

x
− γ

θ2 = arctan y − l1 sinθ
x − l1 cosθ1

⎛
⎝⎜

⎞
⎠⎟
−θ1

γ



Iterative Solutions of 
Inverse Kinematics 
  Resolved Motion Rate Control 

  Properties 
  Only holds for high sampling rates or low Cartesian velocities 
  “a local solution” that may be “globally” inappropriate 
  Problems with singular postures 
  Can be used in two ways: 

  As an instantaneous solutions of “which way to take “ 
  As an “batch” iteration method to find the correct configuration at a target 

 

x = J θ( ) θ     ⇒
θ = J θ( )#

x



Essential in Resolved Motion 
Rate Methods: The Jacobian 

  Jacobian of direct kinematics: 

  In general, the Jacobian (for Cartesian positions and 
orientations) has the following form (geometrical 
Jacobian): 

pi is the vector from the origin of the world coordinate system to the origin of the i-th link coordinate 
system, p is the vector from the origin to the endeffector end, and z is the i-th joint axis (p.72 S&S)


Analytical

Jacobian
x = f θ( )     ⇒

∂x
∂θ

=
∂f θ( )
∂θ

= J θ( )



The Jacobian Transpose 
Method 

  Operating Principle: 

-  Project difference vector Dx on those dimensions q which can reduce it 
the most 

  Advantages: 

-  Simple computation (numerically robust) 
-  No matrix inversions 

  Disadvantages: 

-  Needs many iterations until convergence in certain configurations (e.g., 
Jacobian has very small coefficients) 

  Unpredictable joint configurations 
  Non conservative 

Δθ =α JT θ( )Δx



Jacobian Transpose 
Derivation 

Minimize cost function  F = 1
2
xtarget − x( )T xtarget − x( )

= 1
2
xtarget − f (θ)( )T xtarget − f (θ)( )

with respect to θ by gradient descent:
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∂θ
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Jacobian Transpose 
Geometric Intuition 
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The Pseudo Inverse 
Method 

  Operating Principle: 

-  Shortest path in q-space 

  Advantages: 

-  Computationally fast (second order method) 

  Disadvantages: 

-  Matrix inversion necessary (numerical problems) 
  Unpredictable joint configurations 
  Non conservative 

Δθ =α JT θ( ) J θ( )JT θ( )( )−1Δx = J #Δx



Pseudo Inverse Method 
Derivation 

For a small step Δx, minimize with  repect to Δθ the cost function:  

F = 1
2
ΔθTΔθ + λT Δx − J(θ)Δθ( )

where λT  is a vector of Lagrange multipliers.
Solution:

(1) ∂F
∂λ

= 0 ⇒ Δx = JΔθ

(2) ∂F
∂Δθ

= 0 ⇒ Δθ = JTλ ⇒ JΔθ = JJTλ

⇒ λ = JJT( )−1
JΔθ

insert (1) into (2):

(3) λ = JJT( )−1
Δx

insertion of (3) into (2) gives the final result:

Δθ = JTλ = JT JJT( )−1
Δx



Pseudo Inverse 
Geometric Intuition 

Target
 x

start posture
=

desired posture
for optimization



Pseudo Inverse with explicit 
Optimization Criterion 

  Operating Principle: 

-  Optimization in null-space of Jacobian using a kinematic cost function  

  Advantages: 

-  Computationally fast 
-  Explicit optimization criterion provides control over arm configurations 

  Disadvantages: 

  Numerical problems at singularities 
  Non conservative 

F = g(θ), e.g., F = θi −θi,0( )2
i=1

d

∑

Δθ =αJ #Δx + I − J #J( ) θΟ − θ( )



Pseudo Inverse Method & 
Optimization Derivation 

For a small step Δx, minimize with  repect to Δθ the cost function:  

F = 1
2

Δθ + θ − θΟ( )T Δθ + θ − θΟ( ) + λT Δx − J(θ)Δθ( )
where λT  is a vector of Lagrange multipliers.
Solution:

(1) ∂F
∂λ

= 0 ⇒ Δx = JΔθ

(2) ∂F
∂Δθ

= 0 ⇒ Δθ = JTλ − θ − θΟ( ) ⇒ JΔθ = JJTλ − J θ − θΟ( )

⇒ λ = JJT( )−1
JΔθ + JJT( )−1

J θ − θΟ( )
insert (1) into (2):

(3) λ = JJT( )−1
Δx + JJT( )−1

J θ − θΟ( )
insertion of (3) into (2) gives the final result:

Δθ = JTλ − θ − θΟ( ) = JT JJT( )−1
Δx + JT JJT( )−1

J θ − θΟ( )− θ − θΟ( )
= J #Δx + I − J #J( ) θΟ − θ( )



The Extended Jacobian 
Method 

  Operating Principle: 

-  Optimization in null-space of Jacobian using a kinematic cost function  

  Advantages: 

-  Computationally fast (second order method) 
-  Explicit optimization criterion provides control over arm configurations 
  Numerically robust 
  Conservative 

  Disadvantages: 

  Computationally expensive matrix inversion necessary (singular value 
decomposition) 

  Note: new and better ext. Jac. algorithms exist 

Δθ =α J ext. θ( )( )−1Δx ext.

F = g(θ), e.g., F = θi −θi,0( )2
i=1

d

∑



Extended Jacobian Method 
Derivation 

The forward kinematics x = f (θ) is a mapping ℜn →ℜm , e.g., from a
n-dimensional joint space to a m-dimensional Cartesian space. The
singular value decomposition of the Jacobian of this mapping is:
                                      J θ( ) = USVT

The rows V[ ]i  whose corresponding entry in the diagonal matrix S is
zero are the vectors which span the Null space of J θ( ). There must be
(at least) n-m such vectors (n ≥ m). Denote these vectors ni , i ∈ 1,n − m[ ].
The goal of the extended Jacobian method is to augment the rank
deficient Jacobian such that it becomes properly invertible. In order
to do this, a cost function F=g θ( )  has to be defined which is to be
minimized with respect to θ in the Null space. Minimization of F 
must always yield:

                                     ∂F
∂θ

= ∂g
∂θ

= 0

Since we are only interested in zeroing the gradient in Null space, 
we project this gradient onto the Null space basis vectors:

Gi =
∂g
∂θ
ni

If all Gi  equal zero, the cost function F is minimized in Null space.
Thus we obtain the following set of equations which are to be 
fulfilled by the inverse kinematics solution:
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For an incremental step Δx,  this system can be linearized:
J θ( )
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or J ext .Δθ = Δxext ..

The unique solution of these equations is: Δθ = J ext .( )−1
Δxext ..



Extended Jacobian 
Geometric Intuition 

 x

start posture

Target

desired posture
for optimization


