
CS545–Introduction to Robotics
Tuesday, February 02, 1999

Introduction to Matlab

In general, if you are unfamiliar with MATLAB, it may be useful to work with a friend initially
to get used to the MATLAB software. MATLAB is fairly easy to use, and in our course we will
only need a very small subset of the available commands. If you have specific questions, you can
email me at sschaal@usc.edu. But please, be brief and state exactly (and briefly) what you want
to accomplish and what you did. The library and UCS have literature on Matlab. Note that Mat-
lab is REALLY a great tool, not just for the course, but for any kind of numerical analysis of
data. Also note that MATLAB has nothing to do with Mathematica: Mathematica is great for
symbolic manipulations and pretty slow for numerics, while MATLAB is great (and fast) at nu-
merics, but it has no powerful symbol manipulation. MATLAB means MATRIX-Laboratory, not
MATH-Laboratory!

1 Starting Matlab

On UNIX, type >matlab<. On PCs or MACs double click the MATLAB application.

2 Demos

Matlab comes with a variety of demos that help to get started. In general, matlab provides help
for every function by just typing “help <function_name>“. Try “help demos” as a first attempt.
This lists a variety of demos that introduce matlab. Try “intro” to learn about some of the very
basics of matlab. Try “graf2d” to see some of the plotting abilities of matlab.

3 Scripts and Functions

Matlab allows you to write functions and scripts. We will only need scripts in the course. Scripts
are just matlab commands written to a file. The file should have the suffix “.m” to make matlab
recognize it is a matlab file. The file must also reside in your current working directory. Use the
“cd” command (like in DOS or UNIX) to change the directory. Use “pwd” to find out in which
directory you currently are.

In general, matlab commands are terminated by a semicolon after each command.

4 Reading Data Files

Use the “load” command to read the data files provided for your homework. For example:

load X.data -ascii

will load the data in the file X.data and interpret the data as ASCII data during loading. You
will find the data under the variable X afterwards. Try the “whos” command to see all variables.
All variables in matlab are treated as matrices, vectors, or scalars. There are also structures like
in C, but this is not relevant for our course.

2

You can display variables by avoiding the semicolon after a command. For instance, just
typing

X

will write the entire matrix to the standard output (you may not want to do this since the ma-
trix X is quite long).

5 Manipulating Matrices

The “intro” demo gives a good idea of what you can do with matrices. Here are some more help-
ful hints.

X(3,4)

accesses element (3,4) (i.e., 3rd row, 4th column).

X(:,4)

accesses the fourth column entirely (i.e., this is a vector).

X(3,:)

accesses the third row entirely (i.e., this is a row vector).

X(3,4:8)

accesses the third row, columns 4 to 8

etc. I assume you get the pictures how to get elements or blocks of matrices.

X=[]

clears a variable and sets its content to “empty”. You can also clear individual rows and col-
umns from a matrix or vector, but note that the indices will shift appropriately, and what used to
be X(4,3) may now be somewhere else.

6 Generating Vectors

A vector can be generated, for example, by:

x= (0.4:0.05:0.8)’;

This creates a vector whose first element is 0.4, the second is 0.45, etc., until the last element
0.8. To make it a column vector, the transpose operator was added. This way of creating vectors
is very useful to create the centers of a histogram, and then the vector can be used in the “hist”
command to make matlab calculate the histogram for you. Note that the histogram is NOT nor-
malized; you need to do this manually.

7 Linear Algebra

Matlab allows you to just multiply matrices and vectors in the most straighforward way by using
*,+,–,/ operators as in other programming languages. Note that you must make sure that you use
the algebra operators appropriately. This mean, you can multiply a matrix by a scalar, but only
by a vector if the vector has the right length and “orientation” (i.e., row or columns format).
Matlab automatically knows whether something is a scalar or a matrix or a vector -- there are no

3

naming conventions. But a good method is to use capital letters for matrices, and small letters for
vectors, and some special small letter variables for scalars (e.g., “s”).

8 Programming a Loop

In a script file, a loop would be programmed like:

n=length(X); % the percent sign is a comment. The function

 % “length” returns the length of a variable; more

 % general is actually the “size” command, which

 % returns number of rows and number of columns

 % of a matrix.

for i=1:n,

sprintf(‘This is the %d iteration\n’,i)

end

The above statement would loop from 1 to n and print the indicated sentence. Note that mat-
lab has many commands very similar to C. The most important difference is that character
strings are in ** single** quotes instead of double quotes.

9 Generating Special Matrices

Note that a vector is an impoverished matrix, and everything stated about matrices is also true for
vectors. Examples of special matrices are:

M=ones(3,4)

creates a 3x4 matrix with only 1’s in the matrix coefficients.

M=zeros(6,7)

creates a 6x7 matrix with only 0’s in the matrix coefficients.

M=rand(6,7)

creates a 6x7 matrix with uniformly distributed values between 0 and 1.

M=randn(6,7)

creates a 6x7 matrix with Gaussian distributed values with N(0,1).

10 Graphs

Check the “graf2d” demo. Check the commands “plot”, “plot3”, “bar”, “bar3”, “hist”, “surf’, and
“surfl” by executing “help <command>“. Create some example matrices and play with the com-
mands. A very useful command is the “hold on” and “hold off” command: it allows you to keep
the content of a graph and plot another graph on top. Also nice is the “zoom on” and “zoom off”
command: if zoom is enabled, you can drag rectangles in a graph to automatically enlarge the
details in this rectangle. Double click resets the graph to original size.

4

11 Printing

Matlab can print every graphics window by executing “print”. By default, the active graphics
window is sent to the default printer. Check “help print” for available options. The “print” com-
mand can also save graphics to files, in pretty much all standard formats (e.g., postscript, etc.).
The “figure” command can be used to make a window active or to create new windows (e.g.,
figure(6) creates window with number “6” if it does not exist yet, or make this window active if
it does exist).

12 Saving Variables

Check the “save” command to learn how to save your entire matlab workspace or selected vari-
ables. Notice the options “-ascii” etc., to determine the format in which you save.

Introduction to Matlab
& Simulink

➨ To start Matalab » matlab

➨ To exit Matlab » quit

➨ Defining Matrices

» a = [1 2 3; 4 5 6; 7 8 9]
a =
 1 2 3
 4 5 6
 7 8 9

» ones(3)
ans =
 1 1 1
 1 1 1
 1 1 1

» zeros(2)
ans =
 0 0
 0 0

Control Toolbox Commands

➨ ss - Create a state-space model.
» sys = ss(a,b,c,d)
 a = x1 x2
 x1 1 2
 x2 3 4
 b = u1 u2
 x1 -2 1
 x2 1.5 -0.5
c = x1 x2
 y1 1 3
 y2 2 4
d = u1 u2
 y1 -2 1.5
 y2 1 -0.5

➨ zpk - Conversion to zero/pole/gain.
» zpk([1],[.5 1],2)
Zero/pole/gain:
 2 (s-1)

(s-0.5) (s-1)

➨ tf - Conversion to transfer function.
» sys = tf([1 .2], [.5 2 4])
Transfer function:
 s + 0.2

0.5 s^2 + 2 s + 4

Simulink
• To start Simulink » simulink

Simulink Block Library 2.2
Copyright (c) 1990-1998 by The MathWorks, Inc.

Sources Sinks NonlinearLinearDiscrete

Demos

In1 Out1

Connections

Blocksets &
 Toolboxes

• Sources

Uniform Random
Number

Step

Sine Wave

Signal
Generator

Repeating
Sequence

Random
Number

Ramp

Pulse
Generator

untitled.mat

From File

[T,U]

From
Workspace

Discrete Pulse
Generator

12:34

Digital Clock

1

Constant

Clock

Chirp Signal

Band-Limited
White Noise

Sine Wave

Sinks
XY Graph

simout

To Workspace

untitled.mat

To File

STOP

Stop Simulation

Scope

 0

Display

Scope

XY Graph

 0

Display

Linear Systems

(s-1)

s(s+1)

Zero-Pole

1

s+1

Transfer Fcn

Sum

x' = Ax+Bu
 y = Cx+Du

State-Space

1

Slider
Gain

K

Matrix
Gain

s

1

Integrator

1

Gain

Dot Product

du/dt

Derivative

1

Gain

Sum

s

1

Integrator

1

s+1

Transfer Fcn

x' = Ax+Bu
 y = Cx+Du

State-Space

K

Matrix
Gain

du/dt

Derivative

Connections

1
Out1

0

Width

Terminator

Subsystem

Selector

Mux

Mux

Merge

Merge

[1]

IC

Ground

{A}

Goto Tag
Visibility

[A]

Goto

[A]

From

Demux

Demux

A

Data Store
Write

A

Data Store
Read

A

Data Store
Memory

TriggerEnable

1
In1

1
In1

1
Out1

Mux

Mux

Demux

Demux

