Probabilistic Robotics

SLAM and FastSLAM

(lightly modified version of the slideset accompanying the Thrun, Burgard, Fox book)

The SLAM Problem

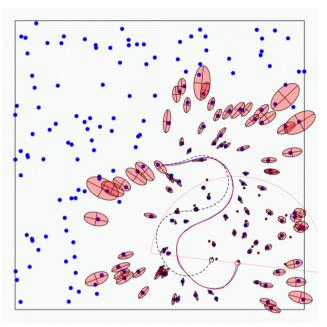
A robot is exploring an unknown, static environment.

Given:

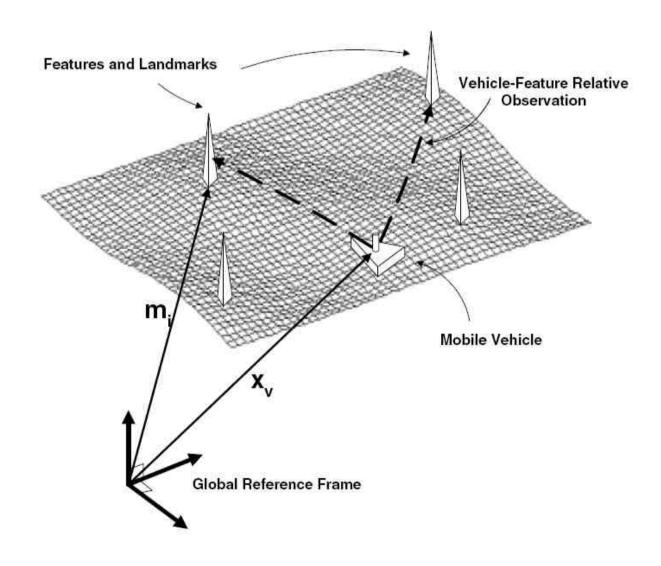
- The robot's controls
- Observations of nearby features

Estimate:

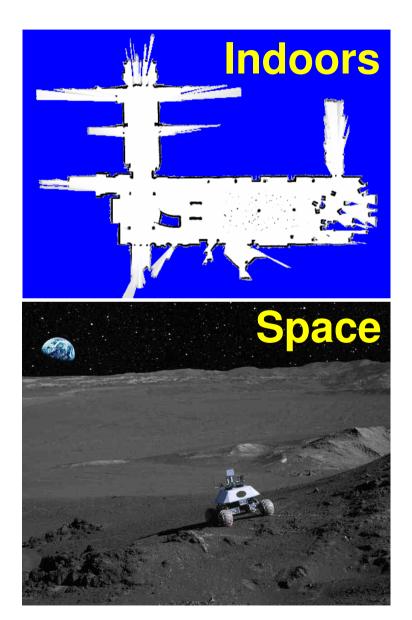
- Map of features
- Path of the robot



Structure of the Landmark-based SLAM-Problem



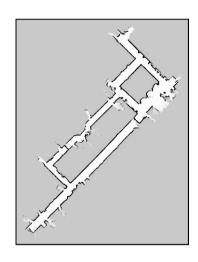
SLAM Applications





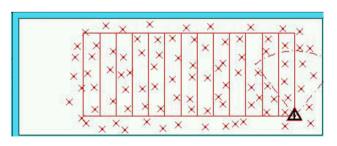
Representations

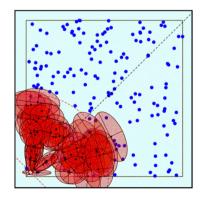
Grid maps or scans

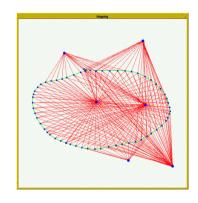


[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;...]

Landmark-based



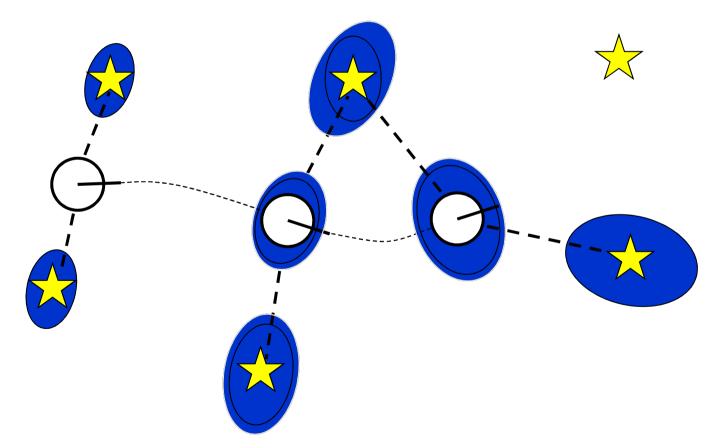




[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;...

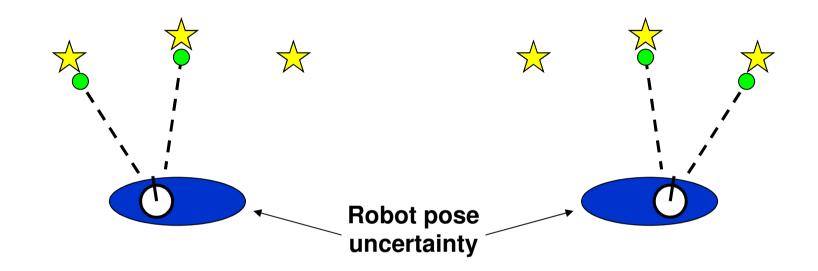
Why is SLAM a hard problem?

SLAM: robot path and map are both **unknown**



Robot path error correlates errors in the map

Why is SLAM a hard problem?



- In the real world, the mapping between observations and landmarks is unknown
- Picking wrong data associations can have catastrophic consequences
- Pose error correlates data associations

SLAM:

Simultaneous Localization and Mapping

• Full SLAM:

Estimates entire path and map!

$$p(x_{1:t}, m \mid z_{1:t}, u_{1:t})$$

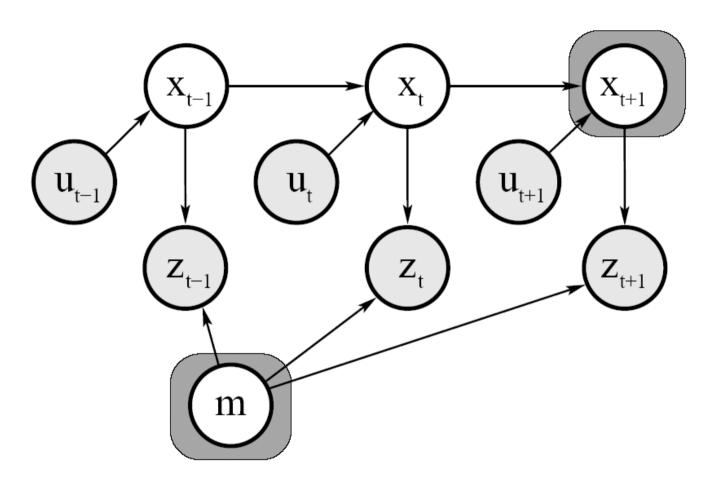
Online SLAM:

$$p(x_{t}, m \mid z_{1:t}, u_{1:t}) = \int \int ... \int p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) dx_{1} dx_{2} ... dx_{t-1}$$

Integrations typically done one at a time

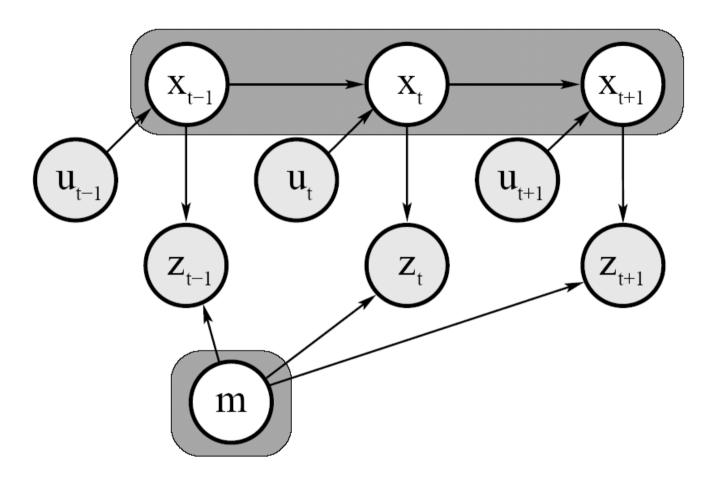
Estimates most recent pose and map!

Graphical Model of Online SLAM:



$$p(x_{t}, m \mid z_{1:t}, u_{1:t}) = \int \int ... \int p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) dx_{1} dx_{2} ... dx_{t-1}$$

Graphical Model of Full SLAM:



$$p(x_{1:t}, m \mid z_{1:t}, u_{1:t})$$

Techniques for Generating Consistent Maps

- Scan matching
- EKF SLAM
- Fast-SLAM
- Probabilistic mapping with a single map and a posterior about poses Mapping + Localization
- Graph-SLAM, SEIFs

Scan Matching

Maximize the likelihood of the i-th pose and map relative to the (i-1)-th pose and map.

$$\hat{x}_t = \underset{x_t}{\operatorname{argmax}} \left\{ p(z_t \mid x_t, \hat{m}^{[t-1]}) \cdot p(x_t \mid u_{t-1}, \hat{x}_{t-1}) \right\}$$
 current measurement robot motion

map constructed so far

Calculate the map $\hat{m}^{[t]}$ according to "mapping with known poses" based on the poses and observations.

Kalman Filter Algorithm

- 1. Algorithm **Kalman_filter**(μ_{t-1} , Σ_{t-1} , u_t , z_t):
- 2. Prediction:

$$\overline{\boldsymbol{\mu}}_{t} = A_{t} \boldsymbol{\mu}_{t-1} + B_{t} \boldsymbol{u}_{t}$$

$$\overline{\Sigma}_{t} = A_{t} \Sigma_{t-1} A_{t}^{T} + R_{t}$$

- 5. Correction:
- $6. K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + Q_t)^{-1}$
- 7. $\mu_{t} = \mu_{t} + K_{t}(z_{t} C_{t}\mu_{t})$
- $\mathbf{8.} \qquad \Sigma_t = (I K_t C_t) \overline{\Sigma}_t$
- 9. Return μ_t , Σ_t

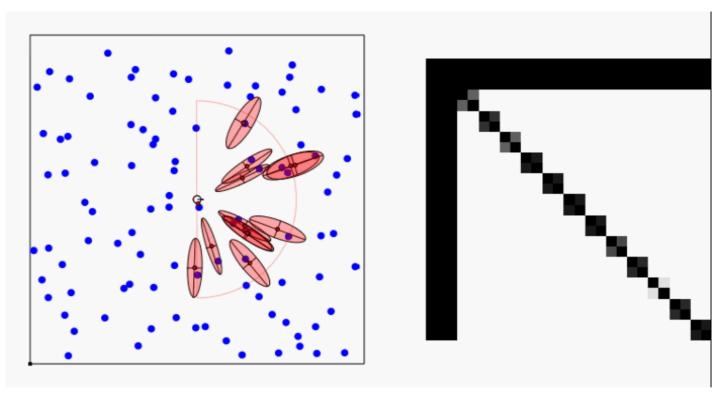
(E)KF-SLAM

 Map with N landmarks: (3+2N)-dimensional Gaussian

$$Be(x_{l}, m_{l}) = \begin{pmatrix} \begin{pmatrix} \sigma_{x}^{2} & \sigma_{xy} & \sigma_{x\theta} \\ \sigma_{xy} & \sigma_{y}^{2} & \sigma_{y\theta} \\ \sigma_{xy} & \sigma_{y}^{2} & \sigma_{y\theta} \\ \sigma_{x\theta} & \sigma_{y\theta} & \sigma_{\theta}^{2} \\ \sigma_{\theta_{l}} & \sigma_{\theta_{l}} & \sigma_{\theta_{l}} \\ \sigma_{xl_{l}} & \sigma_{yl_{l}} & \sigma_{\theta_{l}} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \sigma_{xl_{N}} & \sigma_{yl_{N}} & \sigma_{\theta_{N}} \\ \sigma_{yl_{N}} & \sigma_{\theta_{N}} & \sigma_{l_{l}l_{N}} \\ \sigma_{t_{l}l_{N}} & \sigma_{t_{l}l_{N}} & \cdots \\ \sigma_{t_{l}l_{N}} & \sigma_{t_{l}l_{N}} & \cdots \\ \sigma_{t_{l}l_{N}} & \sigma_{t_{l}l_{N}} & \cdots \\ \sigma_{t_{l}l_{N}} & \sigma_{t_{l}l_{N}} & \sigma_{t_{l}l_{N}} & \cdots \\ \sigma_{t_{l}l_{N}} & \cdots \\ \sigma_{t_{l}l_{N}} & \sigma_{t_{l}l_{N}} & \cdots \\ \sigma_{t_{l}l_{$$

Can handle hundreds of dimensions

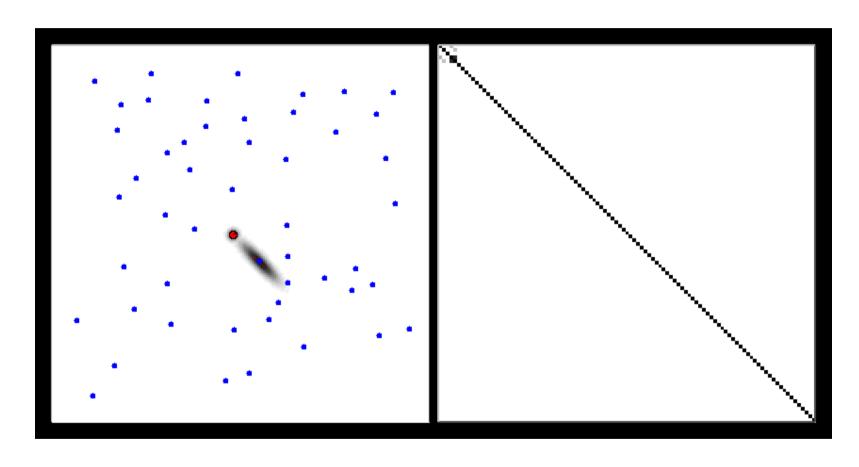
Classical Solution – The EKF



Blue path = true path Red path = estimated path Black path = odometry

- Approximate the SLAM posterior with a highdimensional Gaussian [Smith & Cheesman, 1986] ...
- Single hypothesis data association

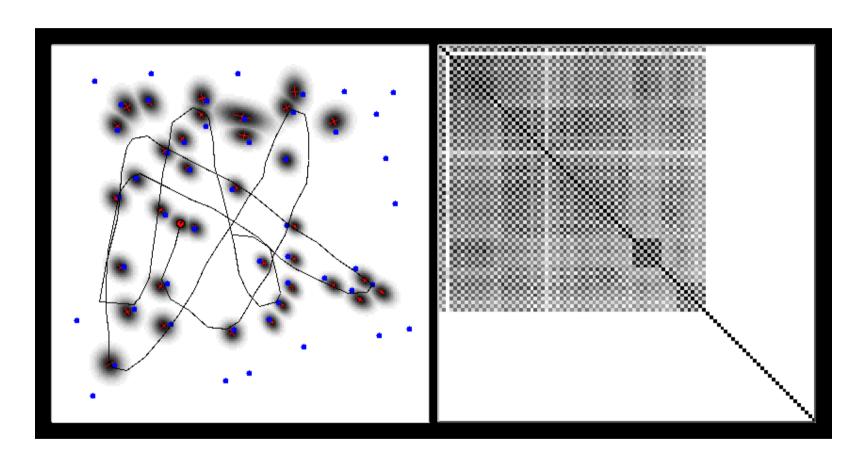
EKF-SLAM



Мар

Correlation matrix

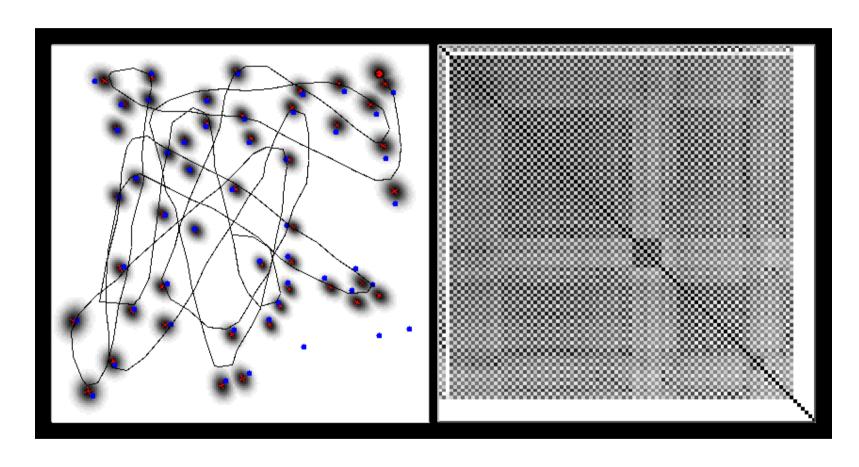
EKF-SLAM



Мар

Correlation matrix

EKF-SLAM



Мар

Correlation matrix

Properties of KF-SLAM (Linear Case) [Dissanayake et al., 2001]

Theorem:

The determinant of any sub-matrix of the map covariance matrix decreases monotonically as successive observations are made.

Theorem:

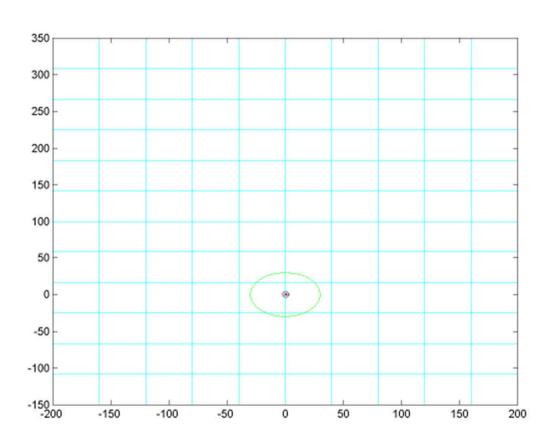
In the limit the landmark estimates become fully correlated

Victoria Park Data Set

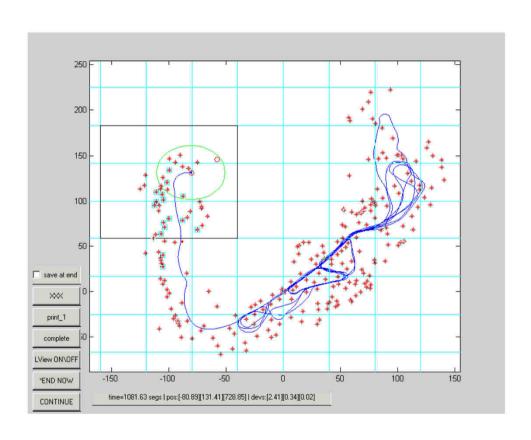
Victoria Park Data Set Vehicle

Data Acquisition

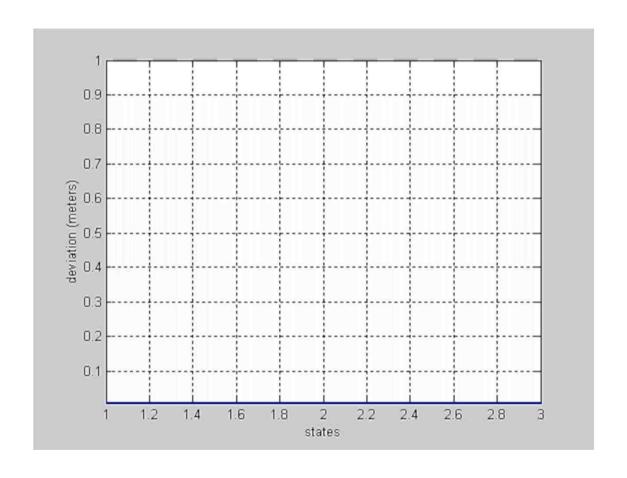
SLAM



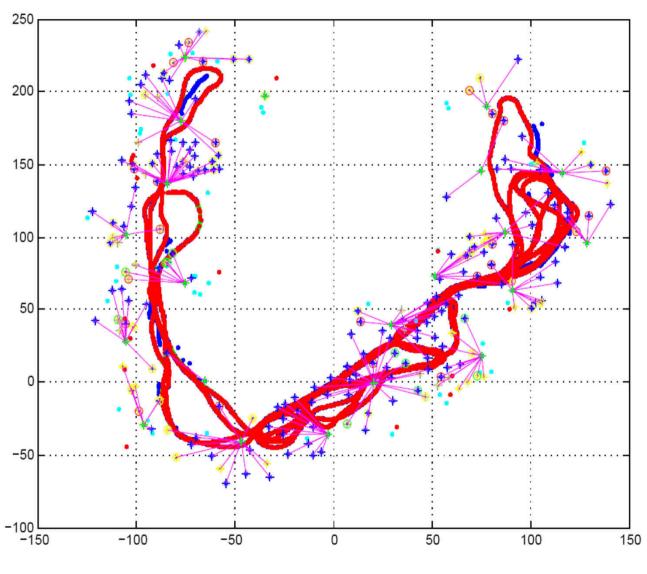
Map and Trajectory



Landmark Covariance



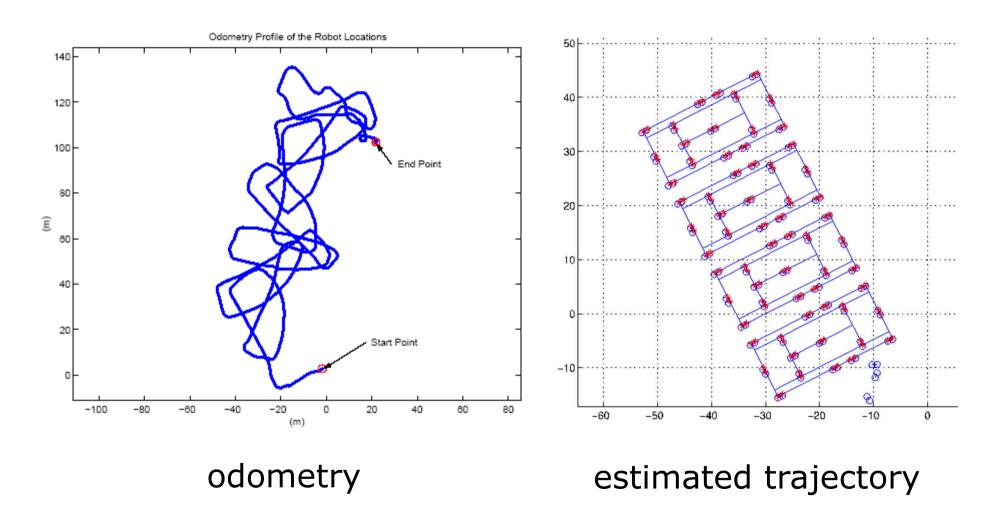
Estimated Trajectory



EKF SLAM Application

[courtesy by John Leonard]

EKF SLAM Application



Approximations for SLAM

• Local submaps
[Leonard et al.99, Bosse et al. 02, Newman et al. 03]

Sparse links (correlations)
 [Lu & Milios 97, Guivant & Nebot 01]

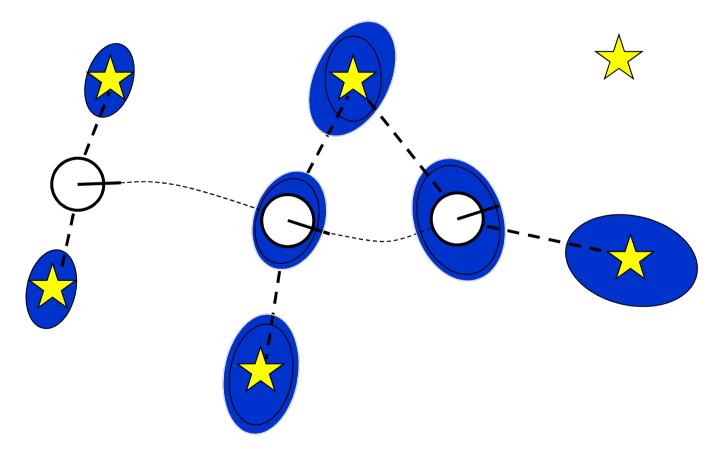
- Sparse extended information filters
 [Frese et al. 01, Thrun et al. 02]
- Thin junction tree filters
 [Paskin 03]
- Rao-Blackwellisation (FastSLAM)
 [Murphy 99, Montemerlo et al. 02, Eliazar et al. 03, Haehnel et al. 03]

EKF-SLAM Summary

- Quadratic in the number of landmarks: O(n²)
- Convergence results for the linear case.
- Can diverge if nonlinearities are large!
- Have been applied successfully in large-scale environments.
- Approximations reduce the computational complexity.

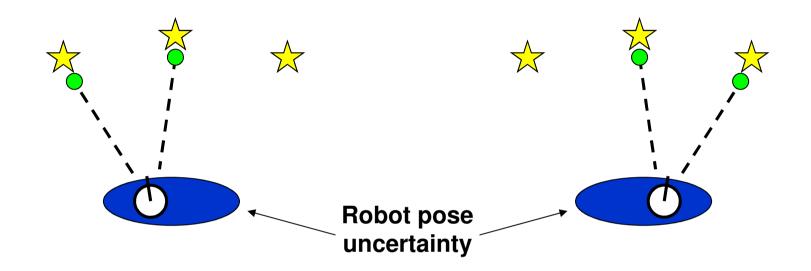
Why is SLAM a hard problem?

SLAM: robot path and map are both unknown!



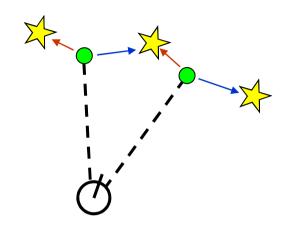
Robot path error correlates errors in the map

Why is SLAM a hard problem?



- In the real world, the mapping between observations and landmarks is unknown
- Picking wrong data associations can have catastrophic consequences
- Pose error correlates data associations

Data Association Problem



- A data association is an assignment of observations to landmarks
- In general there are more than $\binom{n}{m}$ (n observations, m landmarks) possible associations
- Also called "assignment problem"

Particle Filters

- Represent belief by random samples
- Estimation of non-Gaussian, nonlinear processes
- Sampling Importance Resampling (SIR) principle
 - Draw the new generation of particles
 - Assign an importance weight to each particle
 - Resampling
- Typical application scenarios are tracking, localization, ...

Localization vs. SLAM

- A particle filter can be used to solve both problems
- Localization: state space $\langle x, y, \theta \rangle$
- SLAM: state space <x, y, θ, map>
 - for landmark maps = $\langle I_1, I_2, ..., I_m \rangle$
 - for grid maps = $\langle c_{11}, c_{12}, ..., c_{1n}, c_{21}, ..., c_{nm} \rangle$
- Problem: The number of particles needed to represent a posterior grows exponentially with the dimension of the state space!

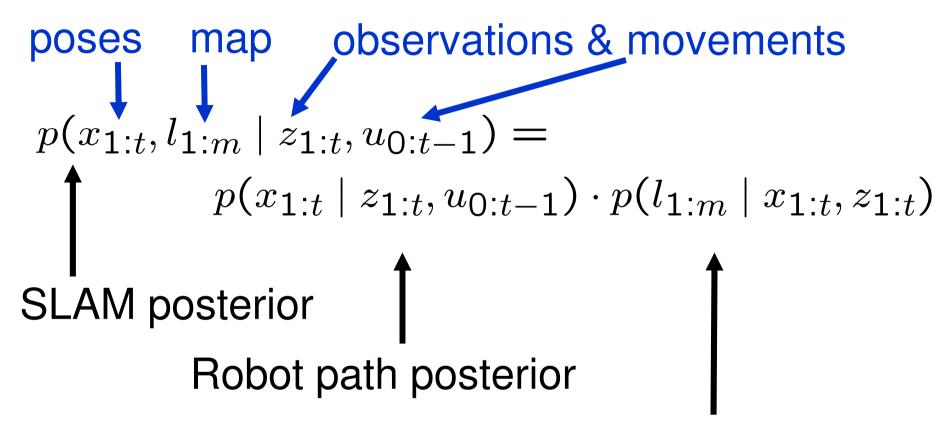
Dependencies

- Is there a dependency between the dimensions of the state space?
- If so, can we use the dependency to solve the problem more efficiently?

Dependencies

- Is there a dependency between the dimensions of the state space?
- If so, can we use the dependency to solve the problem more efficiently?
- In the SLAM context
 - The map depends on the poses of the robot.
 - We know how to build a map given the position of the sensor is known.

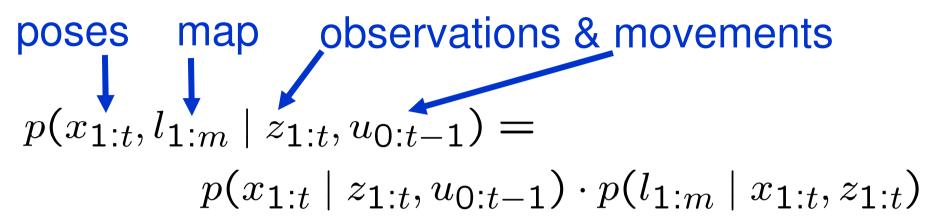
Factored Posterior (Landmarks)



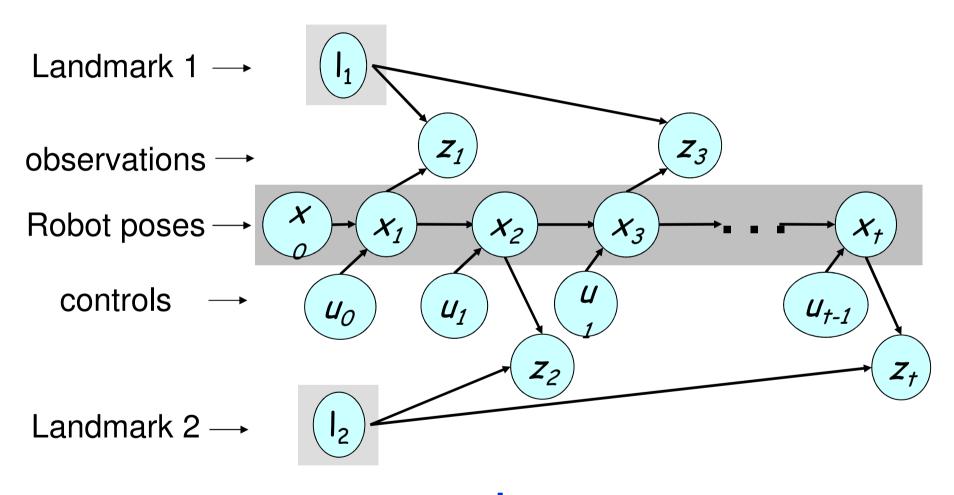
landmark positions

Does this help to solve the problem?

Factored Posterior (Landmarks)



Mapping using Landmarks



Knowledge of the robot's true path renders landmark positions conditionally independent

Factored Posterior

$$p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1})$$

$$= p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(l_{1:m} \mid x_{1:t}, z_{1:t})$$

$$= p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t})$$

Robot path posterior (localization problem)

Conditionally independent landmark positions

Rao-Blackwellization

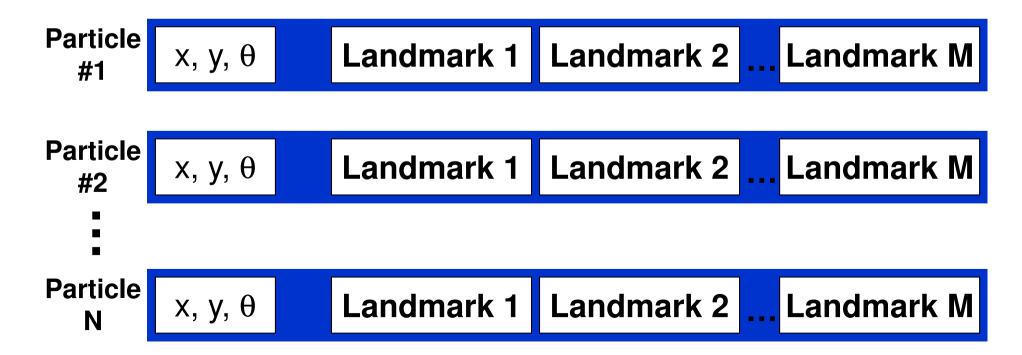
$$p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1}) =$$

$$p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t})$$

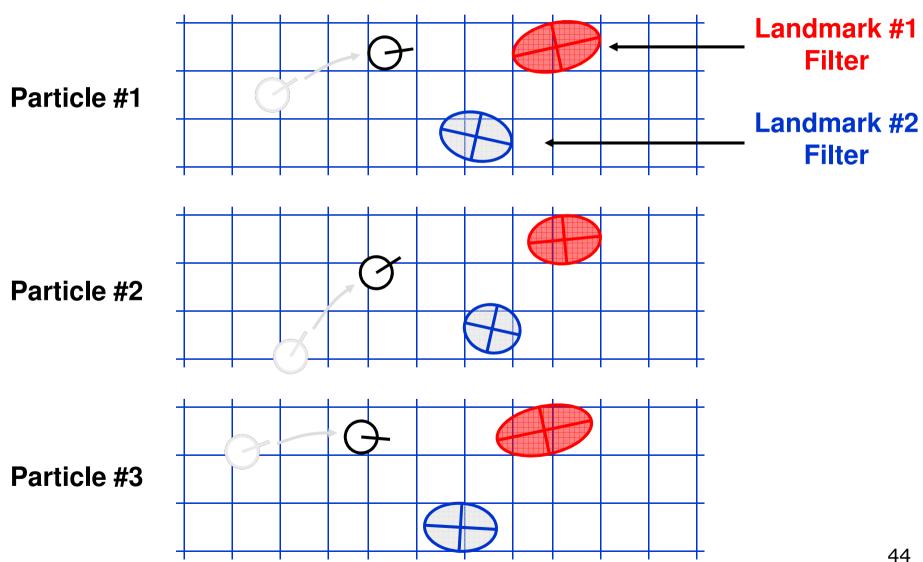
- This factorization is also called Rao-Blackwellization
- Given that the second term can be computed efficiently, particle filtering becomes possible!

FastSLAM

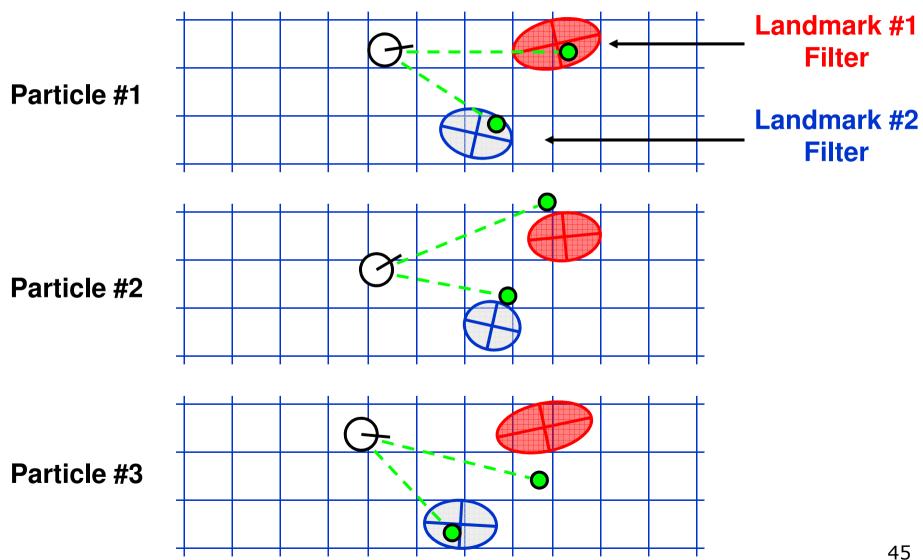
- Rao-Blackwellized particle filtering based on landmarks [Montemerlo et al., 2002]
- Each landmark is represented by a 2x2
 Extended Kalman Filter (EKF)
- Each particle therefore has to maintain M EKFs



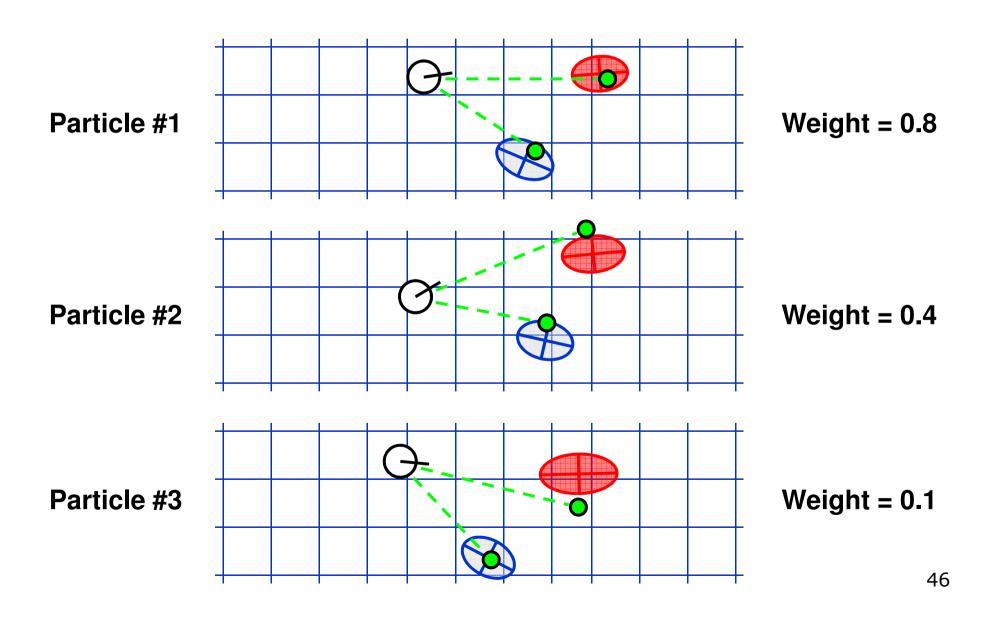
FastSLAM - Action Update



FastSLAM - Sensor Update



FastSLAM - Sensor Update



FastSLAM Complexity

 Update robot particles based on control u_{t-1} O(N)
Constant time per particle

Incorporate observation z_t into Kalman filters

O(N•log(M))
Log time per particle

Resample particle set

O(N•log(M))
Log time per particle

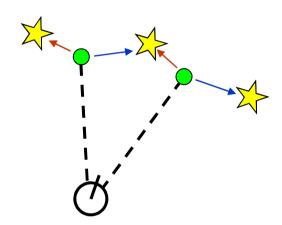
N = Number of particles

M = Number of map features

O(N•log(M))
Log time per particle

Data Association Problem

Which observation belongs to which landmark?

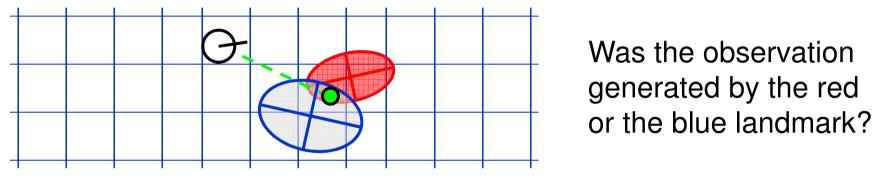


- A robust SLAM must consider possible data associations
- Potential data associations depend also on the pose of the robot

Multi-Hypothesis Data Association

 Data association is done on a per-particle basis

Per-Particle Data Association



P(observation|blue) = 0.7

- Two options for per-particle data association
 - Pick the most probable match

P(observation|red) = 0.3

- Pick an random association weighted by the observation likelihoods
- If the probability is too low, generate a new landmark

Results – Victoria Park

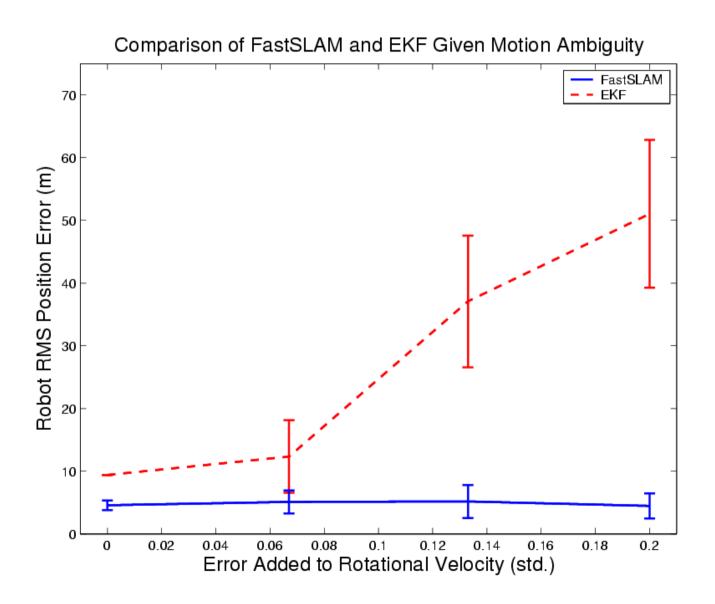
- 4 km traverse
- < 5 m RMS position error
- 100 particles

Blue = GPS Yellow = FastSLAM

Dataset courtesy of University of Sydney

Results - Victoria Park

Results - Data Association



Results – Accuracy

