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Abstract

This paperdescribesan incremetal deployment algo-
rithm for mobile sensometworks. A mobile sensomet-
work is a distributed collection of nodes, eachof which
has sensing,compuation, commurcation and locono-
tion capaliities. The algoithm deplg/s nodesoneat-a-
time into anunknavn ervironmen, with eachnode mak-
ing useof informationgatheed by previously deplo/ed
nodes to determire its target location. The algorithm is
designedo maximize network ‘coverage’whilst simulta-
neously ensuringthat nodesretainline-of-sightwith one
anotter (this latter constraim arisesfrom the needto lo-
calizethenodes;in our previouswork on mesh-basetb-
calization[12, 13] we have shavn how nodescanlocal-
ize themselesin a comgetely unkrown environmentby
using other noces as landmarks). This paperdescribes
the incremental degoyment algoiithm and presets the
resultsof an extensve seriesof simulationexpeiments.
Theseexpeliments sene to both validatethe algorithm
andilluminate its empiricalproperties.

1 Introduction

This paperdescrilesa self-deplymentalgorithmfor mo-
bile sensometworks. A mobile sensometwork is com-
posedof a distributedcollectionof nodes eachof which
has sensing,compuation, commurcation and locono-
tion capabilities. It is this latter capaliity that distin-
guishesa mobile sensometwork from its more corven-
tional staticcousins.Loconmtion facilitatesa numker of
usefulnetwork capaliities, includng the ability to self-
deplo/ andself-regir.

We ervisagethe use of mobile sensornetworks in
applications rangng from urban comtat scenarios,to

search-ad-rescueopertions and emegeng/ environ-
mentmonitoting. Considera scenariocinvolving a haz-
ardows materialdeakin anurban ervironment. Metapha-
ically speakingwe wouldlik e to throw a ‘bucket’ of sen-
sornockesinto a building through a window or doaway.
Thenodesareequippedwith chemicé sensorghatallow
themto detecttherelevanthazardusmaterial. Thenodes
proceedo deplo/ themseles throughoutthe building in
suchawaythatthey maxmizetheareacovered’by their
sensors. Datafrom the noces are transmittedto a base
stationlocatedsafelyoutsidethe building, wherethey are
assembledo form a live mapshawing the concetration
of hazardascompunds within the building.

For a sensometwork to be usefulin this scenariothe
locationof eachnodemustbe determind. In urbanen-
vironments, it is not possibleto use GPSfor this pur
pose. Similarly, landmark-baedlocalization appraches
aregenerallyunsuitalbe, sincewe expectthat prior mod-
els of the environmentareeitherunavailable,inconplete
or inaccuate. This is particularly true in disastersce-
narios,weretheervironmen mayhave undegore recent
(andundanned modfications. Forturately, aswe have
recentlyshavn [12, 13], it is possibleto detemine the
locationof nodesin a network by usingthe nodesthem-
selesaslandmaks; this particdar techniqie does, how-
ever, requile that nodes maintainline-of-sight with one
another Conseqently, in this paper we demanl that
nodesshoulddeplg in sucha way that they maximize
the area'covered’ by the network, whilst simultaneasly
ensuringthateachnodecanbe seenby at leastoneother
node.

The deployment algorithm describedin this paperis
bothincremantal andgreeq. Nodes aredeployed oneat-
a-time,with eachnode makinguseof datagatheedfrom
previously deplg/ed nodes to determire its optimal de-
ploymert location Thealgorithmis greedyin the sense



that it attemptsto determire, for eachnode, the loca-
tion thatwill producethe maxmum increasein the net-
work coveragearea. Unfortunately aswe shav in Sec-
tion 3.3, deternining the ‘optimal’ placemen(evenin a
greed sense)s afundamentallydifficult problem. Con-
sequentlythedeploymentalgaithm describedn this pa-
perreliesonanumberof heuristicso guide this selection
process.

We have condictedan extensive seriesof simulation
expelimentsaimedat charactering the perfamanceof
the incrermental deployment algorithm  These experi-
mentsdemorstratethat our algoithm, which is mockl
free, achieves coverageresultsthatarecloseto thoseob-
tainedusinga mocdel-basedyreed algorithm. Theseex-
perimerts alsoestablisithatthe computationtime for the
algoritmis apolynomialfunctionof ordern 2 in thenum-
ber of deplged nodes. We notethat this algoithm has
previously beendemamstratedrunming on real hardvare,
in anetwork containng four nodeq11].

2 Reated Work

Although we are not aware of ary previous research
thatcorsidersthe specificdeploymentproblemdescribed
hereourwork is influenedandinformedby anumter of
relatedproblems.

The concep of coverage asa paradign for evaluating
mary-roba systemswasintroducedby Gage[8]. Gage
definesthreebasictypesof coverage:blanlket coverage,
wherethe objectie is to achieve a staticarrangmentof
nodesthatmaximizeghetotal detectiorareabariier cov-
eragewherethe objectie is to minimize the prokability
of undetectegbenetratio through the barrier;andsweep
coverage,which is moreor-lessequivalent to a moving
barrier Accordirg to this taxonany, the algorithm de-
scribedin this paperis ablanket coveragealgoiithm.

Theprodem of explorationandmap-tuilding by a sin-
glerobotin anunkrown ervironmen hasbeenconsicred
by a nunber of authas [24, 25, 26]. The frontierbased
apprach of Yamauhi et al [24, 25] is particulaly per
tinent: this exploration algorithm proeedsby increnen-
tally building aglobal occumngy mapof theervironment,
whichis thenanalyzedo find the‘frontiers’ betweerfree
and unknown space. The roba is directedto the near
estsuchfrontier. The network deploymentalgorithm de-
scribedin this papersharesa numter of similaritieswith
this algorithm we alsobuild a global occuang grid of
the environment anddirectnodesto the frontier between
free and unknawvn space. However, in our deployment

algorithmthe mapis built entirely from live, ratherthan
stored,sensorydata. We mustalso satisfy an additional
constraint:thateachnode mustbe visible to at leastone
othernock.

Multi-robotexplorationandmap-huilding hasalsobeen
explored by a numker of authas [4, 17, 20, 19, 3, 14
who usea variety of technigiesrangng from topolagical
matching[4] to fuzzy inference [14] and particlefilters
[21]. Onceagain therearetwo key differenceshetween
theseearlierworks andthe work describedn this paper:
our mapsarebuilt entirely from live, not stored,sensory
data,and our deploymentalgoiithm mustsatisfy an ad-
ditional constraint(i.e. line-of-sight visibility). On the
otherhand the heuristicausedby bothSimmong19] and
Burgad [3] to selectgoal poirts for explorationarestrik-
ingly similar to the heuistics usedin this pape to select
goal pointsfor deployment (seeSection3.3). In effect,
theseheuistics statethatoneshouldnot only explore the
bourdary of knowvn space but that one shouldalsobias
the explorationtowardsregionsin which arobotis likely
to uncover large areaof previously unknown space Bur-
garddescribesinadaptve algoithm for makingestimates
of theseothemwise unpreditablequariities.

The deployment problem describedhereis similar to
that descriled by Bulusu et al [2], who considerthe
problem of adaptve beacorplacenentfor localizationin
largescalewirelesssensonetworks. Thesenetworksrely
on RF-intensityinformationto determire the location of
nodes;apprgriate placemenof RF-beaconss therefae
of critical importance. The authos describean empiri-
cal algaithm thatadapively determins the optimd bea-
conlocations.In a somavhatsimilar vein, Winfield [23]
considerghe prablem of distributedsensingn anad-toc
wirelessnetwork. Nodesareintrodwedinto the environ-
menten-mas and allowed to disperseusinga randan-
walk algoithm. Nodesare assumedo have a limited
commuication range, and the ervironmer is assumed
to be sufficiently large suchthatfull network connetiv-
ity canna be maintaired. Hencethe network relies on
continwous randan motion to bring noces into contact,
andtherebypropayateinformationto theedges of thenet-
work. Our work differs from that describedoy theseau-
thorsin a nunber of significantways. WhereadothBu-
lusuandWinfield areconernedonly with sensorangg,
we assumeéhatnetwork nodesareequipped with sensors
that requireline-of-sight to operate(suchas camerasor
laserrangefinders).Unlike Winfield, our deploymental-
gorithmis specificallydesignedo presere network con-
nectvity. It alsoaimsto prodwe contrdled deployment



ratherthanrandm diffusion Finally, unlike Bulusu,our
algorithm is incrementakatherthanadagive; oncenodes
aredeployed, they donotchangedocation.

A mobilesensonetwork canalsobeviewedasalarge-
scalemolile robot formatian. Suchformationshave been
studiedby anumkerof authas|[1, 7, 18], all of whomde-
scribemethod for creatingand maintainirg formations
via localinteractionshetweerrobds. In thisresearchin-
teractionwith theervironmert is of secondryimportance
to interactionbetweerthe robotsthemseles. In contiast,
the work describechereemphaizesinteractio with en-
vironment,andattemptgo minimizeinteraction between
network nodes.

Finally, we notethatthe prablem of deplaymentis re-
lated to the traditioral art gallery prodem in computa-
tionalgeomety [16]. Theartgallery prodemseekgo de-
termine,for somepolygonal environmen, the minimum
numter of cameasthatcanbe placedsuchthattheentire
ervironmen is obsered. While thereexist a nurmber of
algorithms designedo solwe the art gallery problem all
of theseassumehatwe possesgoodprior modelsof the
ervironmen. In contrast, we assumehatprior mocels of
theervironmen areeitherincompete,inaccurateor non-
existent. The sensometwork musttherefae empirically
andincremenmally determire the structureof the erviron-
ment.

3 The Incremental Deployment Al-
gorithm

The algorithm descriled hereis an incrementé degoy-

mentalgoiithm: nodes are deplo/ed oneat a time, with

eachnoce makirg useof informationgatheedby thepre-
viously deployednocesto determire its idealdeployment
location The algoithm aimsto maximizethe total net-
work coverage, i.e. thetotal areathatcanbe ‘seen’by the
network. At thesametime,thealgorithm mustensurehat
thevisibility constaintis satisfiedj.e. eachnodemustbe
visibleto atleastoneothernode.

3.1 Assumptions, Perfor-

mance

Constraints,

Thealgoithm relieson anumbe of key assumptions:

e Homogeneous nodes: all nocesareassumedo be
identical. Furthernore,we assumehateachnock is
equipped with a range sensor(suchasa laserrange
finder or sonararray), a broadcastconmunicatiors

device (suchaswirelessEtherret), andis mourted
on someform of mobile platform.

e Static environment: the ervironmentis assumed
to be static, at leastto the extent that grosstopol-
ogy remainsunchangedvhile thenetworkis deploy-
ing. We assumefor exanple, that opendoors re-
main openfor the duration of the deploymentpro-
cess. Note that the deplgyment processitself will
modify the ervironmen, asnodeswill bothocclude
andobstru¢ oneanotter.

e Model-free: thereare no prior modelsof the en-
vironment. This algorithmis intendedfor applica-
tionsin which environmen mockls are unavailalle,
incomgete or inaccuate. Indeed,a key taskfor the
network maybeto geneate suchmocels.

e L ocalization: the poseof eachand every nodeis
known in somearbitraryglobalcoordnatesystem.

In our previouswork onmesh-lasedocalization[12, 13],

we have shavn how globd localizationcanbe perfamed
using only the measuredelatiorships betweennetwork
nodes. This technige doesnot requile extemal land-
marksor prior mocels of the ervironment. It does,how-

ever, requre thateachnodebevisibleto atleastoneother
node.lt is thisrequirenentgives riseto thevisibility con-
straint,which we defineasfollows:

e Visihility: eachnodemustbevisible to atleastone
othernock atits deployedlocation.

Thisconstraindoesnotnecessarilymply thatnodeamust
bevisiblewhilst they arein motion;we assumehatnodes
areequippedwith someform of odonetry or inertial nav-
igationthatallows themto navigate during theseperiods.

We evaluatetheincremetal deploymentalgorithmus-
ing two performarce metrics:

e Coverage: thetotalareavisibletothenetwork'ssen-
sors.

e Time: the total dedoymenttime, which includes
boththetime takento perfam thenecessargompu
tations(CPU time) andthe time takento physically
move thenodegrealtime).

Naturally, we wish to maximiz coveragewhist minimiz-
ing thedeplgymenttime.



3.2 Algorithm Overview

The increnmental deploymentalgoiithm hasfour phases:
initialization, selectionassignmenandexection.

e Initialization. Nodes are assignedone of three
states: waiting, active or deployed As the names
suggestawaiting nodeis waitingto bedeployed,an
active nock is in the proessof deplging, anda de-
ployednocke hasalreadybeendeployed. Initially, the
stateof all nodeds setto waiting, with theexcepion
of a singlenodethatis setto deployed. This noce
provides a starting point, or ‘anchor’, for the net-
work, andis notsubjectto thevisibility corstraint.

e Selection. Sensordatafrom the deplo/ed nodesis
combired to form a comnon map of the erviron-
ment. This mapis analyzedo selecthedeployment
location,or goal,for the next noce.

e Assignment. In the simplestcase the selectedjoal
is assignedo thefirst waiting node,andthe noce’s
stateis changd from waiting to active. Assignmen
is complicdaed by the fact that deployed nodes tend
to obstructthe passagef waiting nodesnecessitat-
ing a morecompex assignmenalgoritm. This al-
gorithm mayhaveto re-assigrnthegods of ary num-
berof deployednodeschanging their statefrom de-
ployedto active.

e Execution. Active nodesaredepoyed sequentially
to their goal locations. The stateof eachnodeis
changd from active to deployed uponarrival at the
goal.

The algorithmiteratesthrowgh the selection,assignmen
and execution phasesterminatingonly whenall nodes
have beendeployed.

3.3 Sdlection

The selectionphasedetermins the next deploymentlo-

cation, or goal. Ideally, this goal shouldmaximizethe
coveragemetricwhilst simultaneasly satisfyingthe vis-

ibility corstraint. Unfortunately thereis no way of deter

miningthe‘optimal’ goala priori, notevenin agreedyor

localsense Sincewelacka prior modd, andmustinstead
rely on sensedlatafrom deployed nodespur knowledge
of andreasoimg aboutthe ervironmen is necessarilyn-

compete. For this reasonthe algorithm descrited here
avoidssuchreasoing altogetter. Insteadwe usea num-
berof relatively simplegoalselectiorpoliciesthatrely on

heuristicsto guidethe selectionprocess.

As afirst step,sensodatafrom thedeplo/ednodesare
combiredto form an occiypancygrid [5, 6]. Eachcell in
this grid is assignedone of threestates: freg occuped
or unkrown A cell is freeif it is known to be contain
no obstaclespccyiedif it is known to contan a oneor
more obstaclesand unknownothemwise. We usea stan-
dardBayesiantechniaie [6] to determire the probability
thateachcell is occuped, thenthresholdthis probaility
to deternine the stateof eachcell.

Any cell that canbe seenby one or more nodes will
bemarledaseitherfreeor occuped; only thosecellsthat
cannotbe seenby any node will marked asunkrown. !
Therefae, we canensurethat the visibility constraim is
satisfiedby alwaysselectinggoalsthatlie someavherein
free space.Unfortunately not all free spacecells repte-
sentvalid deploymentlocatiors. Sincenodeshave finite
size,afreecell thatis closean occuped cell may not be
reachale. Similarly, we musteliminatefreecellsthatare
closeto unknown cells, sincetheseunknown cells may
alsoturn out to be occipied. Theremay also exist free
cellsthatarefar from both occupiedandunknown cells,
but are neverthelessunreachable:a nodemay; for exam-
ple, beableto seethroughanopeniry thatis too nariow to
allow passageTo simplify this kind of analysiswe post-
processhe occipang grid to form both a corfiguration
grid andareadability grid.

As the namesuggestsa corfigurationgrid is a repre-
sentationof the nodes’confguration space[15]. Each
cellin the configurationgrid canhave oneof threestates:
free occuped andunknown A cell is freeif andonly
if all the occuypang grid cells lying within a certaindis-
tanced are also free (the distanced is usually setto a
value greaterthanor equalto the node’s radiws). A cell
is occuped if thereareoneor morethe occu@ng grid
cellslying within distanced thatare similarly occupiel.
All othercellsaremarkedasunknavn.

A nodecanbesafelyplacedat ary freecell in thecon-
figurationgrid. To deternine whethersucha cell is also
reachalle, we further processthe configuation grid to
derive the reachabity grid. This is doneby applying a
flood-fill algoiithm to freespacen the configurationgrid,
startingfrom the locationof eachdeplojed nodein turn.
Cells in the reachaility grid are thuslabeledas either
reacalle or unreachalle.

Figure1 shavs anexamge of the occupany, configu
ration andreachablity grids geneatedfor a singlenode

1strictly speakimy, sincesimple Bayesan reasoniig doesnot distin-
guishbetweenignorance and contraliction, a cell may also be marked
asunknawn if there is contralictory evidenceregarding its occupaicy
stae.
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Figurel: (a) A fragmen of the simulatedervironmen contairing a singlenoce. (b) Occupamy grid: blackcellsare
occuped, white cellsarefree,graycellsareunknown. (c) Configuationgrid: blackcellsareoccuped, white cellsare
free,graycellsareunknown. (d) Reachabilitygrid: white cellsarereachale, graycellsareunrezhable.

in a simulatedenvironmen. Note that the setof reach-
ablecellsis a subsebf the setof free configuationcells,
whichisin turnasubsetf thesetof freeoccypang cells.
Thus,by selectinga goalthatlies within areachale cell,
we simultaneosly ensurehatthedeplo/ing node will be
visible, thatit will notbein collision,andthatthereexists
somepathsuchthatthenodecanreachthegoal.

Having determiredthereachabity spacetheselection
algorithm makesuseof two heuristicsto guide final goal
selection:aboundaryheturistic anda coverage heuistic.

e Boundary heuristic: nodesshoud deplog/ to the
bourdarybetweerfree andunkrown space.

Thisheuistic seekdo placenodesin suchawaythatthere
is minimal overlap betweersensonyfields, therely maxi-
mizingthe coveragemetric.

e Coverage heuristic: nodesshoulddegdoy to thelo-
cationatwhichthey will ‘cover’ the greatst areaof
presentlyunkrown space.

Thisheuristicseekdo placenodesatthelocationatwhich
they have the greatespotentialto increasethe coverage
area,given that we make the optimistic assumptiorthat
all unknown areasare, in fact, free space. Thereis no
guarateethat this assumptioris correct, of course;the
nodemaydeplgy to alocationthatappeasto cover alarge
areaof unkrown spaceonly to find thatit hasdeploed
itself into a closet.

e P1: randanly selectalocationin freespace.

e P2: rancbmly selectalocationon the free/unknavn
bourdary.

e P3: selectthefreespacdocationthatmaximizesthe
coverageheuristic.

e P4: selectthe free/urknown boundarylocationthat
maximizeshe coverageheuristic.

Thesepolicies expressall possiblecombinationsof the
two heuistics, including the ‘contrd’ casein which nei-
ther heuristicis used. Thefirst two are stochasticwhile
the latter two are determiiistic. Note that P4 is a spe-
cial caseof P3;it is includedpartly for comgetenessand
partlybecasgeit canbecompuedmuchmorerapidlythan
P3. In Section4, we will compare the perfomanceof

thesdour policiesin anexpelimentalcontet, andattempt
to deternine the relative contrilutions of the undelying

heuristics.

3.4 Assignment

The assignmenphaseattemptsto assignthe newly se-
lectedgoalto awaitingnodk. Thisprocesss comgicated
by thefactthatnodesnayfind themselesunableto reach
somepartsof the environmen dueto obstrution from
previously deployednodes. Suchobstrictionbecanesin-
creasinglylikely asthe size of the nodesappoacheghe

In andof themseles,the heuristicsdo not necessarily sizeof openingsin theervironmen. Thereis, fortunately

specifyauniquegod. They can,however, beincomporated
into a number of goal selectionpolicies eachof which
will fully deternine auniguegoal. We have implemented
four suchselectionpolicies:

a very natual solutionto this prablem that exploits the
homogeneity of the network nodes: an obstru¢ed node
may swap goalswith the nodeobstructingit. Thus, if
nodeA is obstructedy nodeB, node B canmaveto A’s
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Figure2: (a) A typicd obstructim problem, with a waiting node unableto reachits deploymentlocation. The gray
areaindicategheregion of spacehatis notyetcoveredby thenetwork. (b) Theobstructim is resoled by re-assignig

thedeploymentlocationto anotler node.

deploymentlocation, while A replacesB at its original
deploymentlocation. Sinceall nodes areassumedo be
equivalent, this goal-svappng makes no functional dif-
ferene to the network. For complex environments,with
mary obstrutions, this resolutionstrategy may needto
be appliedrecursvely: A replacesB, B replacesC, C
replacesD andsoon.

The assignmenphaseusesa slightly modfied version
of this procedure in which we do not attemptto directly
infer which nodesareobstrictingwhichothernodes. The
algorithm is asfollows.

e Constructa graph in which eachvertex representsa
network noce andeachedgerepesentsa reachabil-
ity relationshipbetweertwo nodes(i.e. nodeA can
reachnodeB’s position,andvice-verse). Thelength
of eachedgecorrespndsto thedistancebetweerthe
nodes, andthe goalis repesentedy a dunmy ver
tex.

e Find the shortespathfrom thefirst waiting nodeto
to goal. Thelengthof ary paththrowgh the graph is
given by the sumof edge lengtls, andthe shortest
pathis found usingdynamic programmirg.

e Mark every nodeon the shortespathasactive, and
assigneachnodethe goal of reachimy the position
currerily occipiedby thenext nodealongthe path.

This algorithm is illustratedin Figure 2, which shavs
a prato-typicd graphwith the shortestpath highlighted.
Note that while it is not strictly necessaryor all of the
nodes on this pathto move, all of the potertial obstruc-
tionshave beenresohed

The assignmenalgoithm requiesthat we deternine
the reachabity relationshipand distancebetweenn? /2
pairs of nodes. In principle, this requires that we gen-
eratea plan for reachig every nodefrom every other
node. In practice,we cansimplify this processby gen-
eratinga unique distan transform[26] for eachnoce.
Thedistanceransfam is a simpleform of dynamic pro-
grammirg: distancesare propaatedout from the noce,
traveling through free configurationspaceandarownd oc-
cupiedor unkmown space.Ultimately, a distancewill be
assignedo eachcell fromwhichthenode canbereache.
Thegraph is constrictedby simply readirg off thesedis-
tances.

The assignmentlgorithm describd above produces
someinterestingoehaior: thenetwork will tendto ‘ooze’
out from its startinglocation,with mary nodesbeingac-
tive at any given point in time. In addition asthe net-
work spread through the environment, the samenodes
will tendto remainonedge of thenetwork. Notethatthere
aremary, mary alternatve assignmenalgoithmsthatwe
could chaose,someof which will prodwce radicdly dif-
ferentnetwork behaior. In this paper however, we will
consideronly the simplealgorithm describd above.

3.5 Execution

During the execution phaseactive nodes aredeplo/edto
their goallocations.Nodes aredeplo/ed usingsequential
exectuion; i.e. we wait for eachnodeto reachits god be-
fore degoying the next node. Active nodesaredeployed
in the orde in which they were assignedjoals: the first
nodewill move to the new deplgymentlocation the sec-



ondwill moveto take up thefirst nodes old location and
soon. Sincethereis only onenode in motion atary given
pointin time, andsincethe goalresolutio algoiithm en-
suregshateachsuccessie god is unolstructedthereis no
possibilityfor interfererce betweemodes.

Sequetial execuionis, however, quiteslow: execuion
time is proportiond to the sumof the distancedraveled
by the active nodes, which is, in turn, equalto the dis-
tancea singlenocde would have to travel if therewereno
obstrutions. As the network beconesbigger nodeswill
have fartherto travel, and hencewe expect that execu-
tion timewill increasenoreor-lesslinearly with network
size. Therearealternatvesto sequetial executian: if we
assumehatnodesareequppedwith somemechairsm for
resolvirg interferencewe canusecorcurrent execttion,
in which all active nodesare setin motion at the same
time. Thisalsohasimplicatiors for theassignmenphase
of the algorittm, which mustbe appopriately modified
to make full useof concurentexecuion. Throwgh such
modificatios, it is possible,in principle to createanal-
gorithm in which execuion time is constaty irrespectve
of network size. This topic is, unfortunately beyond the
scopeof this paper

4 Experimentsand Analysis

We have condicted a seriesof simulation experiments
aimedat deternining the empirical propertiesof the in-
crememal deploymentalgorithm Two metricsareof par
ticular interest: coverage (how muchof the ervironmen
doesthenetwork cover), andtime (how long doesthenet-
work take to deplg). In both caseswe are interested
notonly in the propertiesof the 50-nale network usedin
theseexpeiments,but alsoin thescalingpropertiesof the
algorithm. Thatis, we would like to undestandthe con-
sequenesof increasinghe network sizeinto therange of
hundedsor thousadsof noces.
OurexpeaimentswerecondictedusingthePlayemroba
sener [10] in combirationwith the Stage[22, 9] multi-
agentsimulator Stagesimulateghe behaior of realsen-
sorsand actuatorswith a high degree of fidelity; algo-
rithms developed using Stagecan usually be transfered
to realhardwarewith little or nomodificaion. Thesensor
network for theseexpelimentconsistof 50nodes, eachof
whichis equipgedwith ascannindaserrange finderwith
a 360degreefield-of-view mountedon a differential mo-
bile roba base Eachnodeis alsoequippedwith an‘ideal’
localizationsensothatprovidesaccuratgositionandori-
entationinformation. This sensoiis usedin placeof the

mesh-basetbcalization techniqe describedn [12, 13],
asthis techniqee hasnot yet beenmeiged with theincre-
mentaldeploymentalgorithm. The simulatednodes were
placedin the ervironmentshown in Figure3. Thisis a
fragment of a muchlarge ervironmen thatrepresets a
singlefloor in alargehospital.

We conducteda large setof trials, varying for eachtrial
the selectionpolicy, startinglocation and sensorrange.
Starting locatiors were chosenfrom a set of 10 pre-
selectedocatiors. Sensorang wastakento be 2, 4, 6
or 8m. For the stochastigpolicies P1 and P2, 10 trials
wherecondictedfor eachcombnation of initial location
and sensorrange(a total of 400 trials for eachpolicy).
For the deterninistic policies P3 and P4, a single trial
was condictedfrom eachcombiration of initial location
andsensorrange(a total of 40 trials for eachpolicy). In
eachtrial, we measued network coverage,computation
andexecttion time.

41 Coverage

Figure4 shaws a plot of network coverageasa function
of the numter of deployed nodes. Coverag is measued
by courting thenumter of freecellsin theoccumng grid
andmultiplying by theareacoveredby eachcell. Thefig-
ure shaws the resultsfor eachpolicy, averagel over all
initial locatiors; the sensomrangeis 4m. Variarceis in-
dicatedby the erra bars(mostof which have beenomit-
tedfor clarity). Inspectimg theseplots, it is appaentthat
coverageincreasedinearly with the numbe of deployed
nodes,rrespetive of the selectionpolicy. It is alsoclear
thattheselectiorpoliciesP2to P4,which make useof the
heuristicsdescribedn Section3.3 perfom significantly
betterthanpolicy P1,whichis the contrd case(i.e. ran-
domdeplgment).

We can malke this compaison more preciseby defin-
ing, for eachpolicy, acoverage factor o thatmeasurethe
averagearea‘covered’ by eachnoce. Thatis, «a is such
that the total network coverageis appoximately equal
to an + B, wheren is the numter of deplo/ed nodes
and 3 is somecorstant. Table 1 lists the coveragefac-
torsfor sixteendifferentcomhbnationsof selectionpolicy
andsensorrange(deteminedusingsimplelinearregres-
sion). It shouldbe notedthatthesevaluesare meaning
ful only whenthe total coverageareais muchlessthan
the total areaof the ervironment. In ary bowndedervi-
ronment, network coveragemustevertually saturateand
bourdary effects arelikely to introduce significantnon
linearities. In our expeiiments,the ervironmentis very
largeandbourdaryeffectshave minimalimpact(althaugh
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Figure3: (a) A fragmentof the simulatedenvironment.(b) Occupany grid producedby atypical deployment(pdicy
P4with asensorangeof 4m).
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onecanpossiblyseethe startof sucheffectsin someof
thecoverageplotsin Figure4).

Inspectig the values in Tablel, it is apparaet thatthe
threegod selectionpoliciesthatincomporateoneor more
of the heuistics describd in Section3.3 (policiesP2to
P4)periormsignificanly betterthanthecontrd casgpol-
icy P1). PoliciesP3 andP4,in fact, prodice an almost
3-fald improvemen over simplerancom deplgyment. It
is also apmrentthat most of this improvemen can be
achieved using the boundary heuristicalone: policy P2
(whichusesnly thebourdaryheuistic) is almostasgood
as policy P3 (which usesonly the coverage heuristic).
Furthemore,policies P3andP4arealmostindistinguish-
able,suggstingthatthecoverageheuristic will, in almost
all situations,deploy nodesto the free/urknown bourd-
ary. Thus,it makessensdo usepolicy P4in prefeenceto
P3, sincethe latter requres muchmoretime to compue
andprodwesngligible improvemern in network cover
age(we will look at exactly how muchmoretime P3re-
quiresin thenext section).

Comparimg the coveragefactos obtaired usingdiffer-
ent sensomrangesis alsoilluminating. not so much for
whatit tells us aboutthe algorithm, but for whatit tells

us aboutthe ervironmen. Naively, one would expect
network coverageto increaseas the squareof the sen-
sor range, since douling the range of a single sensor
will quadupleits coveragearea. In a real ervironment,

of course, thingsare not quite so simple: occlusion not

sensotrange, will doninatethe placenent of nodes. In-

spectingTable 1, we canseethatthereis significantim-

provementin coverageasoneincreasesensorangefrom

2m to 6m, but minimd improvemen theredter. This is

true for all four selectionpolicies. For this environment,

6m appeargo be a ‘characteistic length; it may be, for

exampe, thatthis distancecorrespondto theaveragedis-

tancebetweerdoaways,or to theaverag sizeof aroom.

It would beinterestingto condct further expelimentsin

differert ervironmerts, in anattempto correlatethe cov-

eragefactorswith ervironmen structure.

Ideally, we would like to compae thesecoveragere-
sultsagainstthe optimd value,i.e. the greatespossible
coveragethatcanbe obtairedfor a network thatsatisfies
thevisibility constraint.Naturally whendeternining the
optimalcoverage we assumehatwe have a perfect a pri-
ori modelof the ervironment. Even so, determinirg the
optimal coverageis extremely difficult, sinceit necessi-



Range
Policy 2m 4m 6m 8m
P1 1.50+0.07 4.01+£0.20 6.07+042 7.48+0.39
P2 3.63+0.04 10.56+0.13 14.30+0.31 15.68+0.40
P3 4.86+0.05 13.31+0.11 1840+0.38 19.33+0.48
P4 4.86+0.05 13.42+0.09 18.20+0.38 19.30+0.48
Greedy| 5.71+0.03 17.01+0.11 24.65+0.44 27.14+0.88

Tablel: Coveragefactorsfor selectiorpoliciesP1to P4andsensoranges2, 4, 6 and8m.

tatesa searchover the spacehespaceof all possiblenet-
works. This spacds vast. Considera network of n nodes
in an ervironmer of areaA. If we discretizethis ervi-
ronmentinto locationsthataredistanceD apart,thetotal

numter of possiblenetworks is % (not all of
whichwill satisfythevisibility constraim, of coutse).For
arelatively smallnetwork with n = 10, A = 100m? and
D = 0.1m, the number of possiblenetworksis around
109, Clearly, abrute forcesearchof this spacds imprac-
tical. While theremayexist closedform solutionsor good
apprximatiors for this prablem (it is, for examge, sim-
ilar to the art gallery prodem [16]), we are not aware of
ary suchsolutionsatthistime.

Insteadof compaing our resultswith the optimalsolu-
tion, we will insteadcompae themwith the bestgreed
solution. Thegreed solutionis obtainedby constricting
thenetwork increnentally, chaosingfor eachnodethelo-
cationthat producesthe greatestoverage.For our algo-
rithm, the greedysolutionis a fairertestthanthe optimal
solution,sinceit representghe bestresultthatcanbe ex-
pectedor any form of incrementableploymentalgoiithm.

In practice,we generge the greedysolutionusingthe
simulatoranda modfied form of theincrememal dedoy-
ment algotithm. For eachnode, we first compue the
reachablity grid, then‘telepat’ thenock to every reach-
ablecell in successionAt eachlocation,we measureghe
network coverage. Finally, the nodeis teleportedbackto
the locationthat producesthe greatestoverage andthe
processis repeatedor the next node

Table 1 shaws the coveragefactorsfor the gree@ so-
lution. Note that the factorsfor policies P3 and P4 are
within 70%to 80%of thegreealy values: thissuggestshat
our heuistics arevery goodindeed,andthatour policies
areabou asgod asthey arelikely to getfor amodelfree
algorithm.

42 Time

We will considerseparatelythe tempor& properties of

eachof thethreemainphase®f the algorithm: selection,
assignmentaind exeaution. In the caseof selectionand
assignmentye areinterestedn thetime spentin compu

tation; in the caseof execution, we areinterestedn the
time spentmoving nodes (wall-time).

4.2.1 Selection

Figure5 shavsthe measuedcomputationtime for these-
lectionphaseof thealgoithm, plottedagairstthenumter
of deployed noces(notethatthisis alog-log scale). The
four selectionpolicies are plotted separatelywith each
plot representinganaverageover all initial locatiors. The
sensorrangein all casess 4m.

Notethatall four plotsbecanelinearasthe nunberof
deployed nodesn increasesthisimpliesthatcomputation
time is a polynamial function of the numter of deployed
nodes. If we assumethat this function hasa high-ader
termof theform bn?, we cancharacterie eachpolicy in
termsof its exponenta andcoeficiert b. Table2 lists the
a andb valuesfor policesP1to P4. Thesevalueswere
calculatedusinglinear regressionin log-log spaceusing
only the last 30 datapoints for eachpolicy (sincewe are
trying to captue the highest-odertermonly).

Inspectingthis table, two resultsareimmedately ap-
parent. First, and mostimportant, selectiontime scales
sub-linealy with the numkber of deployed nodes (the ex-
ponet a for all policiesis lessthanl). This resultcon-
formsonly partially to our theordical expectatims. The
selectionphaseof the algorithm canbe brokeninto two
parts: map geneation and policy application. For map
generatio, datafrom eachnodeare addedto the occu-
pang grid sequetially andindependenly; hencewe ex-
pectmap geneation to scalelinearly. For policy appli-
cation, the computationtime is dependenton the partic-
ular selectionpolicy used:for policiesusingthe bound-

10
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Figureb: Selectiortime (CPU)for policiesP1to P4. Thescaleis log-log. Mostof theerra barshave beensuppressed

for thesale of clarity.

ary heuistic, computation time will be propational to

thefree/tnknowvn bourdarylength for policiesusingthe
coverageheuristic,compuationtime will beproportional

to the free spacearea. If we assumehatboth boundary
lengthandfree spaceareaare proportionalto the nurmber
of deployed nodes,compuation time for policy applica-
tion will alsoscalelinearly. We attribute the sub-linear
resultsin Table2 to a combiration of two factors:selec-
tion time is domnatedby policy application ratherthan
mapgeneratio, andourassumptiothatbowundarylength

scaledinearlywith thenumbe of deployed nodesis most
prokablyincorred. If we wereto increasehe numter of

nodes in theseexperiments,we expectthatmapgenera-
tion would ultimately dominate,andthata would subse-
quenly appoachl.

The secondresultto note from Table 2 is that policy
P4,whichis almostindistingushablefrom P3in termsof
coverage,is abou 4 timesfaster(corsiderthe coeficient
b); this confirms our earlierconclwsionthat P4 should,in
geneal, beusedin prefeenceto P3.

4.2.2 Assignment

Figure 6 shavs the measureccomputation time for the
assignmenphaseof thealgorithm (onalog-og plot). The
four selectionpolicies are plotted separatelywith each
plot representingan average over all initial locations;the
sensorange in all casess 4m. Theseplots are clearly
linear, suggstingthatcomputationtime for the selection
phasés a polynomial functionof the numkber of deployed
nodes. Table 2 lists the a andb valuesfor the selection
phase:this phaseclearly scalesasn? in the nunber of
deployed nodesn.

Thescalingpropertiesof theassignmetrphaseonfam
exactlyto ourtheoreticakxpectdions. Duringthis phase,
we gereraten separatalistanceransfoms,thecompua-
tion time for eachof which scaleslinearly with the free
spacearea. Sincethe free spaceareaalsoscaledinearly
with n (as we shaved in Section4.1), the assignment
phasewill necessarilgcaleasn x n = n2.

Ideally, we would like this phaseof the algorittm to
scaldinearlyor better We areactively seekingalternatve
algorithns with this propety.

11



Selection Assignmeh Exeaution
Policy a b a b a b
P1 | 030+0.00 0.52+0.01 1.82+0.02 0.01£0.00 0.91+£0.09 0.77+£0.24
P2 1031+0.00 0.50+£0.01 1.80+0.01 0.01£0.00 0.77+0.08 2.05=+0.60
P3 | 079+0.02 11.33+£0.92 186+0.01 0.01£0.00 0.51+£0.10 2.22+0.79
P4 |024+004 266+043 186+0.01 0.01£0.00 0.50+£0.11 2.41+0.98

Table2: Time constats for the threephasef the algorithm. Time is assumedo be a polynomial function of the
numter of deployednodesn, with a high-adertermof theform bn °.

4.2.3 Execution

Figure7 shawvs thewall-clocktime (i.e. theelapsedeal-
time, not CPU time) for the execution phaseof the al-
gorithm (plotted on a log-og scale). The four selection
policies are plotted separatelywith eachplot represent-
ing anaverage over all initial locations.The sensorange
in all caseds 4m. While thereis clearly a greatdeal of
variarce in the dedoymenttime, the generaltrendin all
four plotsis clearlylinear, suggestingpnceagainthat ex-
ecutiontime is a polynamial function of the numker of
deplosed nodes. Table?2 lists the a andb valuesfor the
execuion phase;inspectingthe a values,it is apmrent
thatwhile the execution time for policy P1 scalesmore-
or-lesslinearly with thenumker of deployed nodesn, the
remainirg policiesscalesub-linealy.

Theseresults are intriguing, but not entirely unex-
pected. With sequentialdeployment, executian time is
proportiond to the sum of the distancedraveled by the
active nodeswhichis, in turn, equalto the distancethat
would betraveledby a singlenodein anobstructia-free
ervironmen. For therandm deploymentpolicy P1,we
exped thatthis distancewill scalelinearly with the free
spaceareaandhencewith thenunberof deployed noces.
For the remairing selectionpolicies,which seekto place
nodes on the free-spacebourdary (eitherexplicitly, asin
the caseof P2andP4,or implicitly, asin the caseof P3),
the scaling propeties will dependon the natureof the
ervironmen. If, for examge, the environmentconsists
of a single coriidor which canonly fit onenoce abreast,
the distanceto the boundarywill scalelinearly with the
free spacearea.lf, onthe otherhand theervironmen is
competely empty the distancetraveledwill scaleasthe
squae-roa of the free spacearea.Theresultsin Table2
suggesthat, for policies P3 and P4, this ervironmentis
effectively ‘empty (i.e. thesepoliciesscaleaSn%). For
policy P1,ontheotherhand theenvironmen is only par
tially empty

Notethatwe ideally like exeaution time to be constai

ratherthanlinearor n.z. Considerthe network coverage
rate, i.e. the changein coverageas a function of wall-
time. If exeautiontimeis linear, this ratewill necessarily
decreasasthe numter of deployed nocdesgrows. Con-
sequentlyratherthanincreasinginearly with time, net-
work coveragewill increaseonly logaithmically. Lin-
eargrowth canonly beachieved if execution timeis con-
stant,which impliesthatsomeform of concurentexecu
tion mustbeused(i.e. mary nodesmustmove atthesame
time). As notedin Section3.5, concurentexection re-
quiresa more adwancedassignmenalgorithm togetter
with someform of interferencaesolutio stratgy. While
we areactively researchig thesetopics, they are,unfor-
tunately beyond the scopeof this pager.

5 Conclusion and Further Work

The experimentsdescribedn Section4 clearly establish
the utility of the incrememal deploymentalgorithm and
the heuristicson which it is based.The coverageresults
for policiesP3andP4(whicharemodelfree)arebetween
70% and 85% of the resultsobtaired for a model-tased
greedyalgoithm. Furthemore,the algoithm scalesas
a polynomialfunction of the numter of deployed nodes,
andis in theworstcaseof ordern?. On apracticalnote,
we have alsodemorstratedthatthe algorithmcanhandle
alarge numter of nodes(50) usingmodestcomputational
resourcegoursimulationsvereperformedin real-timeon

asingleworkstatior).

The key weaknes of theseexperimentsis, pertaps,
their relianceon a global localizationmectanismother
than the mesh-basednetha for which the incremen
tal deployment algorithm was designed(the visibility
constraintarises directly from the need of this latter
methodto maintain line-of-sight relatiorships between
nodes). While we have previously demmstratedmesh-
basedlocalizationfor mobile sensometworks [12, 13],
this methodis not yet integrated with the incremental

12
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Figure 6: Resolutiontime (CPU) for policiesP1to P4. The scaleis log-og.

suppessedor thesale of clarity.

deploymentalgoiithm describechere. We are currently
perfaming this integration, and expect to demanstratea
comhnedsystemin thevery nearfuture.

We have alreaq takenthefirst stepsto demorstrating
thisalgaithm runring onrealhardware in arealerviron-
ment. The algolithm hasbeenimplemened and tested
on afour-nodenetwork in a contolled ervironmen [11];
we arecurrerly prepaing amuchmoreambiticusexper
imentinvolving up to 9 nodesin an unnodified erviron-
ment. Thuswe expect to demanstratethe utility of the
incremental deploymentalgoithm for realapplicatinsin
realervironmeits.
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