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Abstract

This paper introduces the concept of a temporal occu-
pancy grid as a method for modeling and classifying
spatial areas according to the time properties of their
occupancy. The method extends the idea of occupancy
grids[1] by considering occupancy over a number of dif-
ferent timescales. This paper presents the basic formal-
ism and its implementation using planar laser range-
finders. It includes the results of a number of validation
experiments, and an experiment in which we demonstrate
the ability to locate doors in a real-world setting.

1 Introduction

Robots and various automated systems have a strong need
to know about their environment. The first step to this
is mapping the static features of an area, but there is far
more to know about an area than what shape it has. This
paper is concerned with learning the motion patterns sit-
uated in and associated with an area.

Locations in an area can be classified by how likely they
are to be occupied, as in the classic occupancy grid (OG)
[1]. Temporal occupancy grids (TOGs) are an extension
of this idea through the time dimension, allowing the
classification of grid cells based on the time properties
of their occupancy. Specifically, motions within the area
under consideration have the property that an OG which
represents a length of time less than or equal to the length
that the motion remains in a specific grid cell will show
a higher probability of that cell being occupied than will
an OG spanning a longer timescale.

A temporal occupancy grid is essentially a matrix with
two spatial dimensions, one time dimension and a num-
ber of additional dimensions equal to the number of dif-
ferent timescales being considered. Thus, each layer of
the TOG is essentially several OGs, each representing a
different period of time leading up to the specific moment
which the layer describes.

TOGs can differentiate between different patterns of oc-
cupancy, even when the absolute probability of occu-
pancy is the same. At any given moment, it is sim-

ple to classify the occupancy of a grid cell as “occu-
pied on all timescales” (i.e., background), “occupied on
no timescales,” or as occupied on some combination of
timescales under consideration.

Objects which move between cells at different rates leave
distinctly different traces in a temporal occupancy grid.
This makes it quite simple to separate the background
from the more temporary occupancies. Traffic patterns,
including which areas are used by swiftly moving objects
and which by slower ones, can be extracted from a TOG.
Mobile robots can apply these data to localization and
navigation. TOGs representing the interactions of several
people with each other and with the space can potentially
be used to classify the type of interaction that occurred.
It is hoped that abnormal uses of an area will be captured
effectively by a TOG.

In the rest of the paper we present the theoretical back-
ground for TOGs and describe how they were imple-
mented and applied. We validate the method by applying
it to automated analysis of scripted human activity. The
occupancy data are gathered with planar laser scanners,
and analyzed at multiple timescales. The results provide
dynamic and static analysis of the area through the use of
TOGs.

2 Related Work

Our approach draws heavily on the body of work con-
cerning classical OGs, particularly Elfes[1]. Occupancy
grids provide the basic foundation upon which this work
is built. Works in multi-object tracking also bear some
relevance to TOGs. Sato and Aggarwal[2] approached
the problem of classifying agent interactionss, using mul-
tiple cameras and computer vision techniques. Mittal and
Davis[3] worked with the unification of input from a wide
baseline array of cameras, and used this unification for
person tracking. These papers provide some background
to the problem of unifying several sensors in the con-
text of human activity modeling. Gern & Gilles[9] and
Olson[10], among others, used lasers to build OGs. Their
work supports the use of laser data for generating occu-
pancy grids. Schulz, Burgard, Fox & Cremers[5], Chang



& Gong[6], and Mahler[8] are among those who have
dealt with modeling of human activity embedded in an
area. The method we present in this paper is a new alter-
native to addressing this problem.

Isolating unusual events in an area has been studied as a
computer vision problem, as in Collins, Lipton, Kanade,
Fujiyoshi, Duggins, Tsin, Tolliver, Enomoto, Hasegawa,
Burt and Wixson[11] and Flinchbaugh & Bannon[12].
The method we propose addresses the problem in a dif-
ferent and hopefully synergistic way.

3 Method

3.1 Occupancy Grids

Occupancy grids divide the world into a set of cells, and
attempt to determine, for each cell, the probability that
the cell is either occupied or empty. This determination is
made by applying Bayes Law to a series of observations.

Let si,j ∈ {occ, emp} denote the state of the cell at
(i, j), let mt denote an observation made at time t, and
let (mt,mt−1...,m1) denote a series of such observa-
tions. Our aim is to determine the probability p(sij |
mt, ...,m1), i.e., the probability that cell (i, j) is in state
si,j , given the series of observations (mt, ...,m1). Un-
der the assumption that observations are statistically in-
dependent, we can determine this probability using the
incremental form of Bayes Rule:

p(si,j | mt, ...,m1) =
p(mt | si,j)p(si,j | mt−1, ...,m0)

p(mt)
(1)

where p(mt | si,j) is the probability of obtaining the ob-
servation mt, given that the cell (i, j) is in state si,j , and
p(si,j | mt−1, ...,m0) is the probability that the cell is in
state si,j , given the series of observations (mt−1, ...,m1).
The first of these terms is often referred to as the sensor
model, while the latter is an incremental prior probabil-
ity. The denominator in the above equation measures the
probability of obtaining the measurement mt, and is ef-
fectively a normalization constant.

Since si,j can take only two values, we can conveniently
re-write Equation 1 in terms of likelihoods (probability
ratios):

p(si,j = occ | mt, ...,m0)

p(si,j = emp | mt, ...,m0)
=

p(mt | si,j = occ)

p(mt | si,j = emp)

p(si,j = occ | mt−1, ...,m1)

p(si,j = emp | mt−1, ...,m1)

(2)

This expression can be further simplified by defining a
pair of log-likelihoods, as follows. Let Oi,j,t denote the
occupancy value for cell (i, j) at time t:

Oi,j,t = log
p(si,j = occ | mt, ...,m1)

p(si,j = emp | mt, ...,m1)
(3)

and let Ri,j,t denote the log-likelihood sensor model for
cell (i, j) at time t

Ri,j,t = log
p(mt | si,j = occ)

p(mt | si,j = emp)
(4)

Substituting these definitions into Equation 2, we obtain:

Oi,j,t = Ri,j,t + Oi,j,t−1

=
∑

0<t′≤t

Ri,j,t′ (5)

Note that we assume equal a priori probabilities and
hence the initial occupancy value for all cells is zero.

The sensors used in this work are SICK LMS-200 scan-
ning laser range-finders. These devices are capable of re-
turning range readings out to a distance of 8 m over a 180
degree swath. These range measurements are accurate to
about 1 cm, and the angular resolution is approximately
1 degree.

Sensor models for this device are relatively easy to con-
struct. Each observation mt consists of a set of range-
and-bearing measurements recorded by one or more
lasers; if we assume that these measurements are statisti-
cally independent, we can update the grid separately for
each range-and-bearing pair.

Let (r, φ) denote the range and bearing recorded by some
laser k at time t, and let (∆r,∆φ) be the uncertainty as-
sociated with this measurement. We use the following
simplified sensor model:

Ri,j,t =

{

−1 if ri,j,k < r − ∆r and |φi,j,k − φ| < ∆φ

+1 if |ri,j,k − r| < ∆r and |φi,j,k − φ| < ∆φ

0 otherwise
(6)

where ri,j,k and φi,j,k denote the range and bearing of
cell (i, j) relative to laser k. This sensor model captures
three fairly intuitive cases. First, there are cells that lie
along the measured bearing φ, but are closer to the laser
than the measured range r. For these cells, the probability
of obtaining the measurement (r, φ) is much higher if the
cell is empty than if it is occupied; hence Ri,j,t < 0.
Second, there are cells that lie along the measured bearing
φ and are at the measured range r. For these cells, the
probability of obtaining the measurement (r, φ) is much
higher if the cell is occupied than if it is empty; hence
Ri,j,t > 0. Finally, there are cells that do not lie along
the measured bearing, or are further from the laser than
the measured range. For these cells, the probability of
obtaining the measurement (r, φ) is the same, irrespective
of whether the cell is occupied; hence Ri,j,t = 0.

3.2 Temporal Occupancy Grids

Temporal occupancy grids extend the idea of occupancy
grids. OGs are a model of a static environment, which
is often insufficient to the needs of automated systems



which interact with the real world. Instead of keeping
track of a single occupancy value for each grid cell, a
temporal occupancy grid maintains several such values,
each representing the probability of occupancy at a spe-
cific time on a specific timescale. For each timescale ∆t,
the occupancy value at time t is calculated using:

Oi,j,t,∆t =
∑

t−∆t<t′≤t

Ri,j,t′ (7)

The optimal number of timescales to use in the grid is not
something that has yet been studied. We experimented
with three timescales in our work to date.

Classification. With the temporal occupancy grid, it
is possible to classify the dynamic properties of each
cell by considering the occupancy values over different
timescales. We can, for example, distinguish between
cells containing fixed obstacles (which have high occu-
pancy values on all timescales) and cells which have a
high probability of containing moving obstacles (which
have high occupancy values on short timescales, but low
occupancy values on long timescales).

Let Ci,j,t denote the classification for cell (i, j) at time
t; we determine Ci,j,t based on the occupancy values
Oi,j,t∆t using a simple nearest-neighbor classifier. We
define a set of class prototypes P = {P}, in which
each prototype P is a set of occupancy values (one for
each timescale); for each cell (i, j), we then determine
the ‘nearest’ prototype using a simple Euclidean distance
metric:

Ci,j,t = arg min
P∈P

∑

∆t

(Oi,j,t,∆t − P∆t) (8)

Consider, for example, a TOG containing three
timescales: 1, 15 and 60 seconds. The class proto-
type for cells containing fixed obstacles would be P =
[1, 1, 1], since we expect these cells to be occupied on
all timescales. In contrast, the prototype for cells which
often contain rapidly moving obstacles would be P =
[1, 0, 0].

Collapsing the grid. It is useful to collapse the time
dimension of a TOG, generating a map which represents
“standard practice” in the area under consideration.

Collapsing the time dimension involves counting the
number of times each cell was classified as matching each
prototype and then dividing by the number of times the
cells were classified. This “mean classification” results
in a matrix with two spatial dimensions and an additional
number of dimensions equal to the number of timescales
being considered.

This map classifies the grid cells in terms of what sort
of activity may be expected there in the general case.
By comparing this map with individual moments of the

TOG, we expect that moments containing unusual activ-
ity may be identified.

3.3 Implementation

We implemented a set of post-processing routines for pre-
recorded activity data. The data were recorded from sev-
eral SICK LMS-200 laser rangefinders which had been
calibrated so that their relative positions and orientations
were known. This calibration was achieved using the
mesh relaxation technique described by Howard, Matarić
and Sukhatme[4]. Data were stored in a coordinate sys-
tem which was shared among all lasers.

The first post-processing routine unifies the data from the
various viewpoints such that each complete cycle of read-
ings (one reading from each laser) becomes a single im-
age of the world at a particular time. Positive readings
(“something is there”) override negative readings (“noth-
ing is there”), which in turn override uncertain readings.
Stated another way: if any laser sees something, it is as-
sumed that there is indeed an object there, while if some
lasers cannot see a location but others can see that it is
empty, the location is assumed to be empty. Only if no
laser can see a location is it recorded as being uncertainly
occupied at that moment. This is reasonable as laser data
are not generally prone to false positives.

The second post-processing routine finishes the task of
generating the TOG by using a moving window strategy
to process the frames which the first post-processor emits.
For each timescale under consideration, a window of a
different size moves through the data. The value stored
in a TOG cell is the average of the occupancies at that
location over the period of time equal to the timescale
previous to the moment the cell represents.

4 Experimental Validation

The goal of our experiments was to determine to what
extent the method could accurately discover the layout
and motion profile of a room containing activity, and how
well it could localize and classify the activity at any given
moment. A final experiment was performed to confirm
the real-world utility of the TOG.

4.1 Experimental Design

We performed two experimental scenarios to test our
TOG method and a final experiment to assess the utility
of the method. In the first experiment, we validated the
method’s ability to accurately locate features in a static
environment. In the second experiment we validated the
method’s ability to classify the temporal properties of the
environment by analyzing scripted human activity. Fi-
nally, we assessed the utility of the method by analyzing
unscripted human activity in a real-world setting.

For the first experiment, data were gathered from four
lasers placed approximately 18 inches above the floor.
The environment was entirely static.



For the second experiment, the same configuration of
lasers was used. The experiment consisted of a single per-
son moving about the space randomly for approximately
45 seconds followed by approximately three minutes dur-
ing which four people walked counterclockwise around
the border of a four sided figure. The room layout for this
experiment is shown in Figure 2. The circular dots mark
the locations of the four lasers, while the X-shaped dots
mark the corners of the figure that the subjects walked
along.

For the third experiment, a single laser was set up in the
foyer of a public building and used to record approxi-
mately 20 minutes of unscripted activity in the area. The
goal of the experiment was to determine whether the of-
ten used exterior door would be identifiable in the TOG.
Data for the third experiment were gathered by a single
laser placed at approximately 18 inches above the floor.

The timescales used during all experiments were 1, 15,
and 60 seconds.

4.2 Experimental Results

The first experiment resulted in the correct extraction of
the static features of the environment (accurate to within
the size of the grid cells). Figure 1 illustrates the result of
this experiment.

Figure 1: Probability of cells to be classified as back-
ground in experiment 1

In the second experiment, we were able to extract the
time properties of the human activity. Specifically, TOG
cells which corresponded to locations on the path that
the volunteers walked were classified as having a much
higher probability of being occupied on the 1 second
timescale than on any other timescale. Figure 3(a) illus-
trates this result. The figure represents the probability of
cells to be classified as occupied primarily on the 1 sec-
ond timescale. Similar maps of the 15 second and 60
second classifications are essentially empty. Figure 3(d)
represents the probability of cells to be classified as back-
ground during the same experiment. Note the close cor-
relation with the static features extracted in experiment
1.

Figure 2: Layout of the room where the validation exper-
iments occurred

The final experiment was a test of utility rather than a
validation of the method. The goal was to locate the
exterior door of the building using the TOG methodol-
ogy outlined in this paper. The result was that the door
was uniquely represented in the collapsed map generated
from the TOG. Figures 4(a), 4(b), 4(c) and 4(d) represent
the probability of cells to be classified as primarily “oc-
cupied on 1 second timescale,” “occupied on 15 second
timescale,” “occupied on 60 second timescale,” and “oc-
cupied on all timescales” (i.e. background), respectively.
The circled feature on Figure 4(c) and Figure 4(d), which
is the only feature that appears relatively strongly in both
the background and a second timescale, corresponds in
position with the exterior door of the building. Figures
4(a) and 4(b) are included to show that the feature does
not appear in other timescales.

As a point of interest, Figure 4(a) shows the path between
the elevator door, the interior laboratory door, and the
elevator as having a relatively high probability of occu-
pancy on the 1 second timescale, while Figure 4(b) shows
relatively high probabilities of occupancy on the 15 sec-
ond timescale at points which correspond at least roughly
to the elevator door and to another location where peo-
ple had a tendency to stop and converse with the experi-
menter. In order to aid visibility, identical brightness and
contrast adjustments have been applied to all four figures
representing the foyer experiment.

5 Conclusion

This paper introduces the notion of a temporal occupancy
grid (TOG) as a tool for classifying motion in an area,
both instantaneously and over an extended time. We have
demonstrated that TOGs can isolate the location of mo-
tion, can classify locations according to the speed of mo-
tion that occurs there, and can extract the static features
of the environment. This technique has applications in
robot navigation, automated security systems, and human
activity modeling. In future work we plan to extend and



(a) (b) (c) (d)

Figure 3: Probability of cells to be classified as occupied primarily by (a) 1 second activity, (b) 15 second activity, (c)
60 second activity and (d) “background” during the second experiment

(a) (b) (c) (d)

Figure 4: Probability of cells to be classified as occupied primarily by (a) 1 second activity, (b) 15 second activity, (c)
60 second activity and (d) “background” during the foyer experiment



apply this methodology to the problem of finding unusual
and abnormal activity.
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