
1

A Fast and Stable Penalty Method for Rigid Body
Simulation
Evan Drumwright

University of Southern California
drumwrig@robotics.usc.edu

Abstract— Two methods have been used extensively to model
resting contact for rigid body simulation. The first approach, the
penalty method, applies virtual springs to surfaces in contact to
minimize interpenetration. This method, as typically implemented,
results in oscillatory behavior and considerable penetration. The
second approach, based on formulating resting contact as a linear
complementarity problem, determines the resting contact forces
analytically to prevent interpenetration. The analytical method
exhibits expected-case polynomial complexity in the number of
contact points, and may fail to find a solution in polynomial time
when friction is modeled. We present a fast penalty method that
minimizes oscillatory behavior and leads to little penetration during
resting contact; our method compares favorably to the analytical
method with regard to these two measures, while exhibiting much
faster performance both asymptotically and empirically.

I. INTRODUCTION

The problem of contact modeling is one of the greatest
obstacles to simulating rigid bodies. Tradeoffs must be
made between speed, numerical stability, and accuracy.
Recent work has approached contact modeling in different
ways: solving for contact forces analytically [1], treating
collision and resting contact using impulses [2], [3], and
formulating the time-stepping equations to respect non-
penetration constraints [4]. Nevertheless, these solutions
may be too slow for or otherwise inappropriate for some
simulation domains. For example, both robotic and haptic
simulation require high frequency integration, and the sim-
plest method, the penalty method [5] often remains the best
solution in such cases.

The penalty method applies a restorative force at the
point of deepest penetration between two bodies. This point
can be generally be found very quickly, particularly if the
geometries of intersection are primitive types. However, the
penalty method suffers from two particular drawbacks that
often make dynamic simulation difficult. First, applying a
separating force can result in oscillatory behavior when two
bodies are in resting contact (see Figure 1). Second, the
forces generated by the penalty method can be immense

if the bodies collide with relatively high velocity, often
leading to numerical instability [6]. As a result, very small
step sizes and excessively damped implicit integrators are
often required.

Fig. 1. The result of the application of restoring forces to the point of deepest
penetration on successive simulation steps. The cube oscillates on the planar
surface as a result.

We present a method for contact modeling that treats im-
pacts with a standard impulse-based method while resting
contact is managed using a penalty method that runs in
time O(N lg N) in the number of contacts. Our approach
uses multiple contact points and an integral term to achieve
greater stability and less penetration than using the deepest-
point penalty method. Additionally, our penalty method is
competitive in terms of stability and penetration with the
analytical approach for resting contact.

We use the word stability within this article to refer
to resistance to perturbation, as in the dynamical systems
sense, rather than numerical stability. However, we are
unable to prove stability using convential means (e.g., root-
locus method, Lyapunov functions, etc.), because arbitrary
forces may be applied to simulated bodies. We do provide
an indicator of stability, however, as seen in Section IV.

II. BACKGROUND

This section provides background on contact and colli-
sion modeling in rigid body simulation. It covers several
classes of methods and discusses where the particular ap-
proaches have been successful and where they are lacking.

2

A. Separation of methods for contact and collision
Moore and Wilhelms [5] provided some of the earliest

work toward combining rigid-body simulation and com-
puter graphics. They introduced a popular paradigm in
rigid-body simulation: contacts and collisions are separated
using a threshold velocity, and handled using different
means. For example, Moore and Wilhelms determine the
impulse-velocities1 for collision handling by algebraically
solving a system of 15 equations with 15 variables using
conservation of momentum and Newton’s law of restitu-
tion.2 For low relative velocity projected along the contact
normal, Moore and Wilhelms applied a single virtual spring
to mitigate interpenetration.

Moore and Wilhelms’ virtual spring method is discontin-
uous. They apply a restorative force to the point of deepest
penetration (or nearest approach), and do not apply force
once the objects begin separating (even if still penetrat-
ing). This discontinuous method can be readily extended
to perform analogously to a proportional-derivative (PD)
controller (using zero desired penetration depth and zero
desired relative normal velocity) or even a proportional-
integrative-derivative (PID) controller, as is done in Section
III-B.

B. Analytical solutions to constrained contact
Resting contact can be modeled by determining the

appropriate constraining forces analytically. For bilateral
(i.e., joint) constraints, a Lagrange-multiplier approach can
be used to solve for the constraining forces in O(n) time [8]
(n is the number of links in the loop-free, articulated body).
Unfortunately, unilateral constraints cannot be resolved in
this manner. The principal way of determining contact
forces is by formulating the system as a linear comple-
mentarity problem (LCP) [9]. A linear complementarity
problem takes the form:

Ax + b = w

x ≥ 0

w ≥ 0

xTw = 0

where A is a n × n matrix, and x, w, and b are n × 1
vectors. Given A and b, the goal is to solve for vectors

1The term impulse-velocity is used because true (i.e., infinite force over an
infinitesimally small time interval) impulses cannot be used in discrete time
rigid body simulation. However, the velocities of colliding objects are updated
as if an impulse had been applied.

2Hahn [7] also solved for collision impulses analytically, but did not handle
resting contact separately, thereby leading to drift.

w and x that satisfy the constraints. In the case of contact
constraints, x and w are the vectors of normal forces and
relative accelerations, respectively; the nth element of each
denotes the signed magnitude of the vector when projected
along the nth contact normal at the nth contact point. A and
b can be computed in time O(n2), where n is the number
of contact points, if the bodies in contact are unarticulated
[10]. If the bodies in contact are articulated and possess
m links, A and b can be computed in time O(mn) [11]
or time (m3n) [12]. Given b and the symmetric, positive-
definite matrix A, the desired normal force magnitudes can
be computed in worst-case exponential time but expected
polynomial time in the number of contact points [13].

When friction is added to the system, the problem
becomes much harder computationally. For dynamic (slid-
ing) friction, the number of constraints per contact point
increases to two. Far more troubling, however, is that
the matrix A generally becomes non-symmetric and non-
positive definite. As Cottle notes [13], solving a LCP
under such conditions is effectively as difficult as quadratic
programming (i.e., NP-hard in general). Managing static
(sticking) friction in this model is no easier. Static friction
constrains the magnitude of the applied friction force at
any contact point to be no greater than the coefficient
of friction times the magnitude of the normal force. The
magnitudes of the two tangent directions at the contact point
are thus constrained nonlinearly (i.e.,

√
f 2

t1 + f 2
t2 ≤ µfN),

and the problem becomes a nonlinear complementarity
problem (NCP); as might be expected, solving a NCP
is also as difficult as solving a quadratic programming
problem. Indeed, Löstedt [14] used quadratic programming
to compute the normal and frictional forces analytically.
Baraff [1] presented a pivoting algorithm for computing the
normal and frictional forces in O(n4) time; this algorithm is
not guaranteed to terminate for systems with friction. As an
aside, the problem of determining contact forces necessary
to ensure that normal and frictional constraints are satisfied
is NP-hard [15]. It is also possible that such a problem is
inconsistent, meaning that no non-impulsive forces can be
determined to satisfy all of the constraints [1].

Finally, approaches that compute static friction forces
analytically, such as the method described above, exhibit
a significant limitation with regard to control of articulated
bodies. The equations used to compute inverse dynamics
and the equations for determining sticking frictional forces
are coupled, so standard inverse dynamics algorithms (i.e.,

3

Recursive Newton-Euler [16]) cannot be employed.3

C. Impulse-based simulation
Mirtich’s seminal thesis on impulse-based simulation [2])

modeled all contacts using trains of impulse-velocities.
Mirtich not only provided an algorithm for applying im-
pulses to articulated bodies simulated using generalized
(rather than maximal) coordinates, but also for computing
impulses using the Stronge hypothesis [17], which ensures
that energy is conserved during collisions with Coulomb
friction.

Mirtich’s work suffers from a few weaknesses and limita-
tions. For resting contact, he applies restitution coefficients
above one to combat drift, which is somewhat unappealing.
Additionally, this mechanism experiences significant slow-
down when objects are resting upon another (i.e., stacked),
as a result of the numerous propagated impulses. Mirtich’s
method for determining the proper impulse to apply to an
articulated body runs in time O(n) (n being the number
of links in the body), but the constant factor is somewhat
high.

D. Formulating the ODEs with constraints
A number of approaches toward rigid body simulation

have investigated explicit time-stepping formulations [18],
[19], [20], [21], [22], [23], [24], [4], [25], [26], [27].
The most recent of these approaches have combined the
Newton-Euler equations for motion with joint and non-
penetration constraints to produce methods that do not re-
quire separation into contact and collision. Non-penetration
and frictional constraints are incorporated into the integra-
tion formula, and positions and velocities that satisfy the
model for the next time step are determined using a LCP
solver. These methods can typically prove the existence of
solutions that satisfy the constraints when the integration
step size is sufficiently low (i.e., inconsistent configurations
do not occur).

Explicit time-stepping formulations are subject to three
particular limitations. First, the computational burden can
be significant: the mixed-LCP (unilateral and bilateral
constraint) pivoting algorithm used by the more popular
methods runs in time O(n4) in the number of constraints in
the expected case. Second, interpenetration generally occurs
due to drift, and must be corrected via an ad hoc post-
stabilization method. Finally, these approaches have yet to

3Such inverse dynamics algorithms can be used, but the outputs will be
incorrect. It remains to be seen whether standard inverse dynamics algorithms
could still function in a useful feedforward capacity while not accounting for
sticking frictional forces

be extended to articulated bodies formulated in generalized
coordinates.

E. Effective treatment of contacts and impacts using im-
pulses

Guendelman et al. [3] introduced a novel idea to rigid
body simulation: by interleaving collision and contact be-
tween integration of the velocity and position equations
of motion, both contact and collision can be modeled
with impulses without resorting to Mirtich’s microimpulse
method for resting contact. Guendelman et al.’s simulation
paradigm consists of the following four phases:

1) modeling collisions (velocity update)
2) integration of acceleration (v̇ = F/m and ω̇ = J−1τ)
3) modeling contact (velocity update)
4) integration of velocity (position update)
Forces are incorporated in step (2). Forces that lead

to interpenetration are effectively cancelled in step (3).
In addition to this particular innovation, [3] is also the
most notable work on simulation of rigid bodies with non-
convex geometries. Guendelman et al.’s work was later
extended to articulated bodies (using maximal coordinates)
by Weinstein et al. [28], [29].

The work of Guendelman et al. is subject to some
limitations. First, the use of Newton’s law of restitution
for handling frictional collision (or contact) is subject to
energy gain, as Stronge noted in his thesis [17]; the authors
could have used Mirtich’s method to address this problem,
but it is computationally expensive. Second, the method of
Guendelman et al. suffers from drift for objects in resting
contact, resulting in increasing interpenetration over time.
Third, Guendelman et al. do not regress the simulation to
the time of impact; skipping this step avoids significant
computation, but often results in noticeable visual arti-
facts unless the step size is small or velocities are low.
Finally, Guendelman et al. requires considerable overhead
per articulated body formulated in generalized coordinates
to determine the collision matrix, K, as is done in [2].

The broader issue with impulse-based methods, including
the work of both Mirtich and Guendelman et al., is that
they have traditionally been local methods: impulses are
applied sequentially at points of intersection. This paradigm
generally works quite well for unarticulated bodies. For
articulated bodies under contact constraints that induce
kinematic loops (e.g., a biped standing with both feet
touching the ground), the constraints will likely not be
satisfied after sequential application of impulses. This situ-
ation arises frequently under Coulomb friction, particularly
sticking friction. Guendelmann et al. attempt to alleviate

4

this problem by performing several iterations of contact
and collision processing. However, there is no guarantee of
convergence to a stable solution, nor do there exist any
heuristics for choosing the number of iterations. Global
impulse-based methods, as suggested by Baraff [30] and
Schmidl and Milenkovic [31], can potentially avoid these
issues, though the computation required is essentially iden-
tical to that described in Section II-B.

F. Analytical computation of penalty forces
Hasegawa and Sato [32] developed a method for an-

alytical computation of penalty forces; their particular
application domain is haptic simulation, which requires
high-frequency updates to drive force displays [33], and
for which solving LCPs is too slow. To compute the
penalty forces, the authors determine the intersection of
the two convex polyhedra in contact using the algorithm
of Preparata and Shamos [34] (running time of O(N lg N),
where N = m + n and m and n are the features in each
polyhedron), and then integrate over the triangular volume
of intersection.

The method of Hasegawa and Sato is quite fast compared
to LCP methods, but suffers from two key limitations. First,
determining the intersection of convex polyhedra suffers
from degeneracies unless exact (and slow) arithmetic is
utilized. If the volume of integration is quite small, then
the intersection algorithm will likely fail, and penalty forces
will not be computed; greater penetration will be the result.
Second, the constant factor for this algorithm is quite high.
The Muller-Preparata algorithm requires an intricate oper-
ation to determine a point interior to both polyhedra and
two 3D convex hull operations. Additionally, the integration
formulae for computing the penalty forces requires several
thousand floating-point operations per triangle.

III. METHOD

Determining exact contact forces necessary to satisfy
nonpenetration constraints is NP-hard, as noted in the previ-
ous section. Most of the methods discussed in the previous
section are approximation methods; exact solutions are not
computed in order to maintain acceptable simulation fre-
quency. These methods make tradeoffs between accuracy,
speed, and numerical stability. The method introduced in
this section is not an exception. It was developed toward
robotic simulation, which requires generalized coordinate
formulations, maximal speed, and minimal oscillations aris-
ing from contact modeling.

Our method uses the normal velocity threshold paradigm
introduced by Moore and Wilhelms [5] to classify contacts

No contact

new impacting contact

Impact
response

no longer contact

∃i, si

n > 0

recurring contact

∀i, si
n ≤ 0,∃j, sj

n < −ε

reimpact (bounce)

Impact method

Penalty
method

recurring contact
∀i,−ε ≤ si

n ≤ 0

no longer contact recurring contact

new resting contact

∃i, si

n < −ε

∀j,−ε ≤ si

n

body
impacted

Fig. 2. The state transition diagram tracks the contact phase between two
bodies. Note that after two bodies are in resting contact (i.e., the penalty method
state), the impact method can only be triggered by a third body impacting
one of the two. ε is a floating-point value very near to zero, and si

n is the
relative normal velocity at the ith contact point (the bodies are separating
when si

n > 0).

as either impacting or resting. The sequential impulse-
based method of Baraff [35], modified to handle frictional
collisions as in [5], [7], [3] and applied at the centroid of
the contact surface, treats impacts; a penalty method han-
dles resting contacts. Unlike traditional velocity threshold
approaches, we apply our resting contact method during
continuous contact regardless of the relative normal veloc-
ity; once continuous contact has begun, impacting contact
can only be triggered if one of the bodies is impacted by
a third body. This approach allows us to drive the velocity
threshold to very near zero, thereby addressing the criticism
that the threshold is set in an ad hoc manner. Figure 2
depicts the transitions between contact phases for a pair of
bodies.

We extend the traditional (i.e., deepest-point) penalty
method in two ways. First, multiple points are used, rather
than only the point of deepest penetration. These points are
taken from the “bottom” surface of the contact geometry
(see Figure 3). This approach yields stability to perturba-
tion, as will be seen in Section IV. The second extension
is the use of an integrative term, thus moving from the
traditional proportional-derivative (PD) control paradigm to
a proportional-integrative-derivative (PID) control model.
The integrative term corrects steady-state error that over-

5

whelms the proportional term; practically, this means that
stacks of objects can be simulated without extensively
tweaking the PD gains.

Fig. 3. The result of the application of restoring forces to multiple points
of penetration (in the manner of the algorithm described in this article) on
successive simulation steps. After a small period of time, the cube lies flat on
the planar surface and experiences little oscillation.

Given points of contact and a normal (a robust method to
compute these is given in Appendix I), computing penalty
forces requires two steps: determining the contact points
on the bottom of the volume of penetration and calculating
restorative forces. These steps are described Sections III-
A and III-B. This section concludes with a discussion on
tuning gains.

A. Determining the points on the bottom of the volume of
penetration

The bottom of the volume of penetration (see Figure
4) is defined as the subset of the intersection surface for
which the inner product between the surface normal and the
contact normal is non-positive (or non-negative, depending
on the direction of the contact normal).

We apply restorative forces only to the points on the
bottom of the volume of penetration to simulate the effect
of virtual springs and dampers existing between the two
objects. This effect is not only physically cogent, but also
prevents the restorative forces from being “wasted” on
surfaces that do not need correction (the applied forces are
normalized by the number of contact points, as described
in Section III-B.)

We compute points on the bottom of the volume of
penetration in the following manner. First, points are sorted
by their distance to the contact plane (i.e., the plane
containing the facet from which the contact normal was
obtained). An algorithm similar to Graham’s Scan [36] is
then employed. Our algorithm selects the farthest point to
the contact plane as a comparator; if multiple such points
exist, the points are projected onto the two-dimensional
contact plane, and the bottom, right-most point is used. All
points are then projected onto the contact plane, and the
signed angles between the vertical axis and the lines passing
through the comparator and every other point are computed.

Fig. 4. We apply restorative forces only to the bottom of the volume of
intersection. In this figure, an extruded isosceles trapezoid is penetrating the
ground, represented by a translucent box. The volume of intersection is itself
an extruded isosceles trapezoid, shown in a lighter shade of red. Six points of
intersection are marked; the bottom points are depicted in green, while non-
bottom points are depicted in yellow. The method described in this article
would not apply restorative forces at the points marked in yellow.

The points are then processed in descending order keyed
on the distance to the contact plane, and a polygon is
constructed incrementally: the place in the sequence in
which a candidate point would be inserted is determined
by performing binary search using the signed angles, and
the point is inserted if it lies outside the current polygon.
Otherwise, the point is discarded. At the end of this process,
seen in detail in Figure 5, all vertices of the polygon are
on the bottom of the intersection volume. This algorithm
runs in time O(N lg N) in the number of contact points.

B. Computing restorative and frictional forces
The restorative force magnitude applied to a given point

ρ using a virtual spring and damper is given by:

||f(ρ)|| = max{kpd(ρ)− kvv(ρ)

r
, 0} (1)

where d(.) is the penetration depth determined using the
contact normal, v(.) is the relative velocity of the two
bodies at the contact point projected along the contact
normal, and kp and kv are proportional and derivative
gains, respectively. We arbitrarily set the contact normal
to point toward body p (i.e., away from body q); therefore,
v(ρ) , ẋp+ωp×(ρ−x̄p)−ẋq−ωq×(ρ−x̄q), where x̄A, ẋA,
and ωA are respectively the center-of-mass, linear velocity,
and angular velocity for a body A. The max operator is
used in Equation 1, because it is desired that contact forces
only act to push objects apart (i.e., they cannot be “glued”
together). The applied contact force is normalized using
the number of contact points (r) at which non-zero force
is applied, so that increasing the number of contact points
does not result in greater applied force.

In addition to the proportional-derivative approach de-
scribed above, we also utilize an integrative term to reduce

6

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5. Depiction of the algorithm for determining contact points on the bottom
surface of the contact geometry. In (a), points are first sorted in decreasing
distance from the contact plane. In (b) the farthest, bottom, right-most point–
the comparator– is selected. In (c), the signed angles between the vertical axis
and the line segment between the comparator and every other point is computed.
(d)–(g) show a polygon constructed incrementally; all of the points are outside
the polygon, and are thus on the bottom surface. In (h), point 4 is found to be
inside the polygon (i.e., it is not on the bottom surface), and is discarded.

steady-state error. Incorporation of an integrative term is not
as straightforward as the proportional and derivative terms.
Contact points must be tracked over time, which is gen-
erally quite difficult, and the integrative term accumulates
until the objects separate. This results in visible “popping”,
as objects resting on others briefly pop upwards.

Rather than accumulate the penetration error per contact
point, we sum the maximum penetration error for the pair
of bodies over the past time of the contact; this precludes
the need to track the penetration error over individual
contact points. To prevent popping, we utilize a “forgetting
factor” (i.e., exponential decay), 0 < λ < 1; λ works
quite well for 0.8 < λ < 0.9 empirically. The decay
reduces the contributions of previous penetration errors,
thus minimizing the popping phenomenon. As Figure 6
indicates, the force from the integrative term accumulates as
time increases for higher values of penetration (e.g., greater
than 0.1). In contrast, the applied force from the integrative
term becomes essentially asymptotic for smaller amounts
of penetration. This behavior is key, because it allows the
integrative term to be used for cases when proportional-
derivative terms are insufficient (e.g., stacks of objects)
without generating excessive forces when the penetration is
low. The resulting formulae for determining the magnitude
of the restorative force is given in Equations 2 and 3.

I ,
t−1∑
i=0

λt−i−1maxyd(y, i) (2)

||f(ρ)|| = max{kpd(ρ, t)− kvv(ρ) + kiI

r
, 0} (3)

In the equations above, d(ρ, s) refers to the penetration
depth of point ρ at step s of the simulation, and t is the
current simulation step.

Once normal forces have been computed as above,
frictional forces may be computed. For slipping friction,
the relative velocity between the two bodies in the tangent
plane is computed, and a force of magnitude µ||f(ρ)|| is ap-
plied in direction opposite to the relative velocity. Viscous
friction and Stribeck effects can be handled in a similar
fashion. Static friction is considerably more difficult to
simulate. Hwang et al. [37] and Yamane and Nakamura [38]
have enjoyed some success by applying virtual springs and
dampers in the tangent plane. In addition to that method,
we have implemented static friction by solving the linear
system Ax = b, where A and b are determined in the
manner used for LCP methods. Determining static friction
forces in this manner is expensive, and thus warranted for
modeling only certain types of contacts (e.g., wheels rolling
on a surface).

7

Fig. 6. Plot depicting the efficacy of the forgetting factor, λ, used in the
integrative term. Because it is infeasible to plot the high-dimensional function
I(.) from Equation 2, each plane intersecting the x-axis (penetration) depicts
constant penetration; for example, penetration of 0.1 at time 10 would indicate
that the penetration depth remained at 0.1 throughout the time interval [0,10].

C. Tuning gains
The method described in this section introduces a new

gain, thereby increasing the difficulty of the tuning process
over that required by the standard penalty method. There
are principled methods to select the gains when the plant
dynamics (i.e., dynamics of the two bodies in contact) are
known; we assume no such knowledge, given that arbitrary
forces may be applied to to these bodies.

Fortunately, the addition of the integral term tends to
decrease sensitivity of gain selection: the proportional gain
can be decreased, because it no longer needs to correct
steady-state error. The examples described in the next
section all used the following set of gains: kp = 100.0(m1+
m2), kv = 50.0(m1 + m2), and ki = 2.0(m1 + m2), where
m1 and m2 are the masses of the two bodies in contact.
There also exist numerous heuristics for setting gains
for PID controllers, such as the Ziegler-Nichols method
[39]. It is also possible to tune gains offline to maximize
performance criteria.

IV. VALIDATION

It would be ideal to validate our contact model against
real-world physical phenomena. However, physicists have
yet to describe models for contact and collision that accu-
rately reflect rigid-body collisions, in part because the rigid-
body assumption (i.e., Young’s modulus going to infinity)
is often a poor approximation. When this omission is
combined with the incomplete understanding of frictional
effects and the difficulty of modeling surface textures, it

becomes challenging to empirically validate the fidelity of
rigid body simulation with contacts. That is why some
in the computer graphics community favor instead the
subjective standard of physically plausible motion (e.g.,
Barzel et al. [40], Guendelman et al. [3]).

Rather than attempt to evaluate the physical accuracy
of our method, we instead present several examples that
stress simulation speed, physical plausibility, and stability
to perturbations during resting contact. Specifically, our
examples consist of a block penetrating a plane, a block
resting on a plane undergoing perturbations, a pile of
objects of different shapes and masses, and two robots
operating in planar environments. Further explanation and
analysis of the examples follow in the remainder of this
section.

A. Block penetrating a plane
A block is set to penetrate a plane before beginning

simulation (see Figure 7) to illustrate the effectiveness of
our method in correcting interpenetration with minimum
oscillation. Though this example is simple, it has important
ramifications for robotic simulation in particular. Simula-
tion of bipeds using the deepest-point penalty method is
quite difficult due to the oscillations produced. Figures 8
and 9 illustrate the stability and penetration error of our
method compared to the deepest-point penalty method, both
of which utilized the integrative term.

(a) (b)

Fig. 7. A block penetrating a plane (a) before the application of our method
(block is set to penetrate plane prior to simulating) and after (b) 1,000 time
steps have elapsed. Note that the proportional gain could be increased to correct
interpenetration faster (i.e., improve the rise time), though popping might result.

We used the same initial configuration of the block for
both methods. A step-size of 1e−3 was used with fourth-
order Runge-Kutta integration. We used the gains for the
multiple-point method as the starting point for the deepest
point method, and sought to achieve a good compromise
between penetration and popping; we ultimately selected
kp = 6000, kv = 3000, ki = 200 for the deepest-point
method, versus kp = 5000, kv = 2500, ki = 100 for the
multiple-point method. We expended considerable effort

8

to determine the gains for the deepest-point method in
an attempt to meet the performance of the multiple-point
method; we were unable to lower either the kinetic energy
or the penetration for the former method significantly using
any combination of gains.

It is meaningless to compare our method to a LCP-
based approach for resting contact on this example, because
LCP approaches determine forces necessary to yield zero
acceleration at contact points: they are unable to correct for
existing penetration.

Fig. 8. Plots of kinetic energy on the problem of a randomly-oriented block
penetrating the plane under the influence of gravity over 3,000 simulation steps.
Note that the y-axis is log-scale.

B. Block with applied forces
We tested a block experiencing downward forces of

random magnitude (sampled uniformly from the interval
[10,100]) applied at random points on the top surface of the
block (see Figure 12). Each force was applied continuously
for 500 time steps to a given point, and then no force
was applied for another 500 steps to give the method
time to return the block to stasis. The process was then
repeated, for a total of ten iterations. Fourth-order Runge-
Kutta integration was used with a step-size of 1e−3.

Figures 10 and 11 illustrate the performance of three
methods: the deepest-point penalty method, the multiple-
point penalty method, and a LCP-based method that uses
the deepest-point penalty method to combat drift. The LCP
solver used is a generic iterative method described in [41].
Figure 10 indicates that the stability to perturbations of our
method is generally several orders of magnitude better than
the deepest-point method; our method performs similarly to

Fig. 9. Plots of absolute penetration on the problem of a randomly-oriented
block penetrating the plane under the influence of gravity over 3,000 simulation
steps. The block measures one unit per side, so a penetration of 0.02 represents
a penetration of 2%.

the LCP-based method. Figure 11 demonstrates the clear
advantage of the LCP-based method over the others with
respect to penetration; the mean penetration of the LCP-
based method is 1.5e−4, which is almost two orders of
magnitude better than the mean penetration of our method
at 5.9e−3. However, our method performs an order of
magnitude better than the deepest point method, which
exhibits a mean penetration of 9.0e−2.

C. Pile of objects
Stacks and piles of objects are often problematic for

contact methods and for local methods in particular. The
constant propagation of forces will cause divergence in
simulations of stacks of objects modeled with a penalty if
the step size is above 1/n, as Kass [42] notes. In practice,
the step size must be several orders of magnitude smaller
than 1/n.

Figure 13 shows a pile of objects for which contacts are
modeled using our penalty method. The objects consist of
boxes, cylinders, and spheres of various sizes and masses;
the masses are determined by selecting from a uniform
distribution over the interval [0, 100]. The objects are resting
inside a translucent box and press against each other and
the box.

D. Simulated robots
We illustrate the advantage of our method over a LCP-

based approach in the domain of robotic simulation with

9

Fig. 10. Plots of kinetic energy on the example of forces being applied to the
top of a block resting on a plane; zero kinetic energy is ideal. The forces are
applied from every major tick mark to every minor tick mark on the x-axis.
No force is applied in the intervals from the minor tick marks to the major tick
marks to illustrate the stability of the methods. Note that the y-axis is log-scale.

two examples. The first example is the two-wheel, differ-
entially driven robot shown in Figure 15, which is similar to
various commercially available mobile robots. The second
example is of a humanoid robot (Figure 14), which has
a differentially driven base, but possesses 26 degrees-of-
freedom. Both robots are in contact with only the ground
plane, and the number of contact points per wheel is limited
to ten.

We used the method proposed by Kokkevis [11] to
determine the LCP matrix A and vector b. Ruspini and
Khatib [12] provide an alternate method that runs in time
O(m3); their method is able to reuse results from forward
dynamics (assuming that the Composite Rigid Body algo-
rithm [16] is used) and may be faster, particularly for bodies
with relatively few degrees-of-freedom. Further research is
necessary to determine where the approaches by Kokkevis
and Ruspini and Khatib are most applicable.

Both examples were run for 2500 iterations. The LCP-
based method required 76.7 seconds to simulate the mo-
bile robot (32.6 steps/second), while the penalty method
completed in 31.0 seconds (80.6 steps/second). Simulating
the humanoid robot required 566.9 seconds with the LCP
method (4.4 steps/second), while the penalty method com-
pleted in 81.4 seconds (30.7 steps/second). These examples
show that the O(mn) factor (m is the degrees-of-freedom
of the robot, n is the number of contact points) in LCP-
based methods is considerable, and also that the LCP-based
method is far slower, even for relatively few contact points

Fig. 11. Plots of penetration on the example of forces being applied to the
top of a block resting on a plane; zero penetration is ideal. The block measures
one unit per side, so a penetration of 0.02 represents a penetration of 2%. Note
that the y-axis is log-scale.

Fig. 12. Positions and magnitudes of forces applied to perturb a cube resting
on the plane. Each arrow points to the position that the force was applied, and
the arrow’s length denotes its magnitude. An arrow of unit length (i.e., an arrow
with a length of a side of the cube) would denote a force of 100N (the mass of
the cube is 10kg, and gravity is 9.8m/s2, so the weight of the cube alone exerts
a force of 98.1N on the plane). The forces were not applied simultaneously;
rather, one force was applied for the first 500 out of every 1000 time steps.

and degrees-of-freedom in the contacting bodies.

V. DISCUSSION

It is somewhat unfair to compare the deepest-point
penalty method, multiple-point penalty method, and LCP-
based method for resting contact using the number of
contact points alone because the process of finding the
contact points is a factor as well; the three methods
present different requirements in this regard. The deepest-
point penalty method requires tracking only the closest

10

Fig. 13. A pile of objects of different shapes and masses. The pile is in a
steady configuration.

Fig. 14. A 26 degree-of-freedom humanoid robot operating in a planar
environment. LCP-based methods for resting contact are too slow for this
articulated body, even when the contact points are relatively few (less than
ten per wheel in the example).

features of two bodies; updating the closest features can
be done in O(1) time [43], [44], and the contact normal
can be computed in constant time as well. The multiple-
point method uses the method described in Appendix I to
determine contact points and the contact normal; its worst
case complexity is O(mn), where m and n are the numbers
of features of two convex polyhedra. LCP-based approaches
can potentially use the O(1) methods noted above, though
oscillation will still be a problem. Baraff [35] described a
O(mn) algorithm for collision detection and contact finding
for use with a LCP-based method. A near O(m+n) method
might be possible by tracking nearest features and using
signed-distance functions; thus, it may be possible to utilize

Fig. 15. A differential-drive mobile robot (two joint, “floating” base) in a
planar environment.

the information that the polyhedra are only touching or
penetrating slightly to reduce the computational complexity.
Further research is necessary to investigate whether the
disparities in requirements for finding contact points and the
contact normal might offset the complexity requirements of
the individual methods.

Determining contact forces can be viewed as a control
theoretic problem complicated by unknown plant dynamics:
in general, arbitrary forces can be applied to the bodies
in contact. This article indicates that not only can resting
contact be achieved effectively using more powerful models
than the proportional-derivative controller, but that other
techniques from control theory might lead to even better
performance. In the future, we plan to investigate using
adaptive control to tune penalty gains online, which would
likely improve performance while eliminating the most
significant drawback of penalty methods, the need to tune
gains.

APPENDIX I
DETERMINING POINTS OF CONTACT AND CONTACT

NORMALS

Determining points of contact and calculating contact
normals have been discussed at length in the context of rigid
body simulation. Nevertheless, we have found that these
processes are typically targeted toward nonpenetrating con-
tact, as in Baraff [35]. When these processes are conducted
in the context of penetrating contact, such as in Hasegawa
and Sato [32], estimations are often employed– particularly
when computing contact normals– which can result in
highly undesirable behavior. As a result, this section details
the exact processes used in this article to find points of
contact, determine the point of deepest penetration, and
compute the contact normal. The processes described in

11

this section have proven to be robust over a wide range of
simulation models.

A. Finding points of contact and determining the point of
deepest penetration

In order to rapidly find points of contact, we represent
collision geometries using both triangle meshes and signed
distance functions (computed offline), as in Guendelman
et al. [3]. We use the adaptively sampled distance field
(ADF) of Frisken et al. [45], which provides very fast
inside/outside queries using an octree, though other ap-
proaches are viable as well, such as that of Jones et al.
[46].

We first determine the set of pairs of intersecting trian-
gles. We query individual vertices of these triangles against
the ADFs; points found to be inside the other geometry have
their adjacent triangles added for processing, thus handling
the case where one or more triangles is completely inside
the mesh of the other. Naturally, we also store the point of
deepest penetration, which is simply the vertex that results
in the minimum signed distance, as reported by the ADFs.
We are not the first to use an approximate method for
computing the point of deepest penetration; previous work
includes that of Fisher and Lin [47].

Given that the number of vertices of a given polyhedron s
is vs, the expected asymptotic complexity for this operation
is O(vp lg Nq + vq lg Np), where Np and Nq are the number
of cells of the respective ADFs. Though it is theoretically
possible for the octrees underlying the ADF representations
to be extremely poorly balanced, resulting in O(vpNq +
vqNp) complexity, in practice. In comparison, the worst-
case complexity of 3D penetration depth computation for
exact approaches is O(mn) [48], where m and n are
the number of features in each polyhedron. Frisken et al.
[45] have indicated that the number of cells required to
accurately represent an arbitrary polyhedron with an ADF
may be an order of magnitude lower than the number of
features in the polyhedron, thus implying that Ns << vs.

Some geometries may utilize fewer vertices per surface
area than others (e.g., long cylinders, boxes, etc.), resulting
in relatively few contact points. For these shapes, we sub-
divide the triangle meshes offline using Steiner points until
all triangles are below a minimum area. We have observed
our method to be robust to non-uniform distributions of
vertices over the intersecting polyhedra.

B. Determining the contact normal
Once the point of deepest penetration has been deter-

mined, the normal is computed to be in the direction that

will separate the two objects with minimum translation.
There are two vectors that satisfy this requirement, pointing
in opposite directions.

To determine the contact normal, each point of penetra-
tion is projected along the facet normals of the alternate
geometry to the individual planes containing the facets.
The contact normal will lie in the direction of the facet
normal that yields the minimum of the maximum distances
of contact points to facets (see Equation 4). Only facets
that are intersecting or inside the alternate geometry are
considered.

n̂ = min
n̂i

(max |n̂i · pj − di|) (4)

The complexity of this operation is O(vpvq), where vp

is the number of features of a polyhedron. This operation
often can be speeded considerably by first determining the
contact normal using the process above with only the point
of deepest penetration, exhibiting O(vs) complexity (vs

is the number of features of the second geometry). The
distance of all contact points to the facet plane is then
computed; if a distance is greater than the distance from
the deepest point of penetration to the facet, then the full
process described in the paragraph above will need to be
performed.

REFERENCES

[1] D. Baraff, “Fast contact force computation for nonpenetrating rigid
bodies,” in Proc. of SIGGRAPH, Orlando, FL, July 1994.

[2] B. Mirtich, “Impulse-based dynamic simulation of rigid body systems,”
Ph.D. dissertation, University of California, Berkeley, 1996.

[3] E. Guendelman, R. Bridson, and R. Fedkiw, “Nonconvex rigid bodies
with stacking,” ACM Trans. on Graphics, vol. 22, no. 3, pp. 871–878,
2003.

[4] D. Stewart and J. Trinkle, “An implicit time-stepping scheme for rigid
body dynamics with coulomb friction,” in Proc. of the IEEE Intl. Conf.
on Robotics and Automation (ICRA), San Francisco, CA, April 2000.

[5] M. Moore and J. Wilhelms, “Collision detection and response for com-
puter animation,” in Proc. of Intl. Conf. on Computer Graphics and
Interactive Techniques, 1988, pp. 289–298.

[6] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential
Equations. Engelwood Cliffs, NJ: Prentice Hall, 1971.

[7] J. K. Hahn, “Realistic animation of rigid bodies,” Computer Graphics,
vol. 22, no. 4, 1988.

[8] D. Baraff, “Linear-time dynamics using lagrange multipliers,” in Proc. of
Computer Graphics, New Orleans, LA, Aug 1996.

[9] P. Löstedt, “Mechanical systems of rigid bodies subject to unilateral
constraints,” SIAM Journal on Applied Mathematics, 1982.

[10] D. Baraff, “An introduction to physically based modeling: Rigid body
simulation II– nonpenetration constraints,” Robotics Institute, Carnegie
Mellon University, Tech. Rep., 1997.

[11] E. Kokkevis, “Practical physics for articulated characters,” in Proc. of
Game Developers Conf., 2004.

[12] D. Ruspini and O. Khatib, “A framework for multi-contact multi-body
dynamic simulation and haptic display,” in Proc. of the IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS), 2000.

12

[13] R. W. Cottle, J.-S. Pang, and R. Stone, The Linear Complementarity
Problem. Boston: Academic Press, 1992.

[14] P. Löstedt, “Numerical simulation of time-dependent contact friction
problems in rigid body mechanics,” SIAM J. of Scientific Statistical
Computing, vol. 5, no. 2, pp. 370–393, 1984.

[15] D. Baraff, “Coping with friction for non-penetrating rigid body simula-
tion,” Computer Graphics, vol. 25, no. 4, pp. 31–40, 1991.

[16] R. Featherstone, Robot Dynamics Algorithms. Kluwer, 1987.
[17] W. J. Stronge, “Rigid body collisions with friction,” Proc. of the Royal

Society of London A, vol. 431, no. 169–181, 1990.
[18] J. J. Moreau, “Standard inelastic shocks and the dynamics of unilateral

constraints,” in C.I.S.M. Courses and Lectures, G. del Piero and F. Maceri,
Eds. Vienna: Springer-Verlag, 1985, vol. 288, pp. 173–221.

[19] J. J. Moreau, “Unilateral contact and dry friction in finite freedom
dynamics,” in Nonsmooth Mechanics and Applications, J. J. Moreau and
P. D. Panagiotopoulos, Eds. Vienna: Springer-Verlag, 1988, pp. 1–82.

[20] M. D. P. M. Marques, “Differential inclusions in nonsmooth mechanical
problems: Shocks and dry friction,” in Progress in Nonlinear Differential
Equations and Their Applications. Basel: Birkhäuser Verlag, 1993,
vol. 9.

[21] J. J. Moreau, “Numerical experiments in granular dynamics: Vibration-
induced sized segregation,” in Contact Mechanics, M. Raous, M. Jean,
and J. J. Moreau, Eds. New York: Plenum Press, 1995, pp. 347–358.

[22] D. E. Stewart and J. C. Trinkle, “An implicit time-stepping scheme for
rigid body dynamics with inelastic collisions and coulomb friction,” Intl.
Journal for Numerical Methods in Engineering, vol. 39, no. 15, pp. 2673–
2691, 1996.

[23] M. Anitescu and F. A. Potra, “Formulating dynamic multi-rigid-body con-
tact problems with friction as solvable linear complementarity problems,”
Nonlinear Dynamics, vol. 14, pp. 231–247, 1997.

[24] M. Anitescu, F. Potra, and D. Stewart, “Time-stepping for three dimen-
sional rigid body dynamics,” Computer Methods in Applied Mechanics
and Engineering, vol. 177, pp. 183–197, 1999.

[25] M. Anitescu and F. A. Potra, “A time-stepping method for stiff multi-
rigid-body dynamics with contact and friction,” Intl. Journal for Numer-
ical Methods in Engineering, vol. 55, pp. 753–784, 2002.

[26] M. Anitescu and G. Hart, “A constraint-stabilized time-stepping approach
for rigid multibody dynamics with joints, contacts, and friction,” Intl.
Journal for Numerical Methods in Engineering, vol. 60, no. 14, pp. 2335–
2371, 2004.

[27] F. A. Potra, M. Anitescu, B. Gavrea, and J. Trinkle, “A linearly implicit
trapezoidal method for stiff multibody dynamics with contact, joints, and
friction,” Intl. Journal for Numerical Methods in Engineering, vol. 66,
no. 7, pp. 1079–1124, 2006.

[28] R. Weinstein, J. Teran, and R. Fedkiw, “Pre-stabilization for rigid body
articulation with contact and collision,” in Proc. of ACM SIGGRAPH,
2005.

[29] R. Weinstein, J. Teran, and R. Fedkiw, “Dynamic simulation of articulated
rigid bodies with contact and collision,” IEEE Trans. on Visualization and
Computer Graphics, vol. 12, no. 3, pp. 365–374, May/Jun 2006.

[30] D. Baraff, “Analytical methods for dynamic simulation of non-penetrating
rigid bodies,” Computer Graphics, vol. 23, no. 3, July 1989.

[31] H. Schmidl and V. J. Milenkovic, “A fast impulsive contact suite for rigid
body simulation,” IEEE Trans. on Visualization and Computer Graphics,
vol. 10, no. 2, pp. 189–197, March/April 2004.

[32] S. Hasegawa and M. Sato, “Real-time rigid body simulation for haptic
interactions based on contact volume of polygonal objects,” in Proc. of
Eurographics, 2004.

[33] L. Love and W. Book, “Contact stability analysis of virtual walls,” in
Proc. of Dynamic Systems and Control Divsion ASME, 1995.

[34] D. Muller and F. Preparata, “Finding the intersection of two convex
polyhedra,” Theoretical Computer Science, vol. 7, pp. 217–236, 1978.

[35] D. Baraff, “An introduction to physically based modeling: Rigid body
simulation ii – constrained rigid body dynamics,” Robotics Institute,
Carnegie Mellon University, Tech. Rep., 1997.

[36] J. O’Rourke, Computational Geometry in C, 2nd ed. Cambridge
University Press, 2001.

[37] Y. Hwang, E. Inohira, A. Konno, and M. Uchiyama, “An order n dynamic
simulator for a humanoid robot with a virtual spring-damper contact
model,” in Proc. of the IEEE Intl. Conf. on Robotics and Automation
(ICRA), Taipet, Taiwan, September 2003.

[38] K. Yamane and Y. Nakamura, “Stable penalty-based model of frictional
contacts,” in Proc. of the IEEE Intl. Conf. on Robotics and Automation
(ICRA), Orlando, FL, USA, May 2006.

[39] J. G. Ziegler and N. B. Nichols, “Optimal settings for automatic con-
trollers,” Trans. American Society Mech. Engineers, vol. 64, pp. 759–762.

[40] R. Barzel, J. F. Hughes, and D. N. Wood, “Plausible motion simulation
for computer graphics animation,” in Computer Animation and Simulation
(Proc. Eurographics Workshop), R. Boulic and G. Hégron, Eds., 1996,
pp. 183–197.

[41] K. G. Murty, Linear Complementarity, Linear and Nonlinear Program-
ming. Berlin: Heldermann Verlag, 1988.

[42] M. Kass, “An introduction to continuum dynamics for computer graph-
ics,” Pixar, Tech. Rep., 1997.

[43] M. C. Lin and J. F. Canny, “A fast algorithm for incremental distance
calculation,” in Proc. of the IEEE Intl. Conf. on Robotics and Automation
(ICRA), 1991, pp. 1008–1014.

[44] B. Mirtich, “V-Clip: fast and robust polyhedral collision detection,” ACM
Trans. on Graphics, vol. 17, no. 3, pp. 177–208, 1998.

[45] S. F. Frisken, R. N. Perry, A. P. Rockwood, and T. R. Jones, “Adaptively
sampled distance fields: A general representation of shape for computer
graphics,” Computer Graphics (Proc. of ACM SIGGRAPH), 2000.

[46] M. W. Jones, J. A. Baerentzen, and M. Sramek, “3D distance fields: A
survey of techniques and applications,” IEEE Trans. on Visualization and
Computer Graphics, vol. 12, no. 4, pp. 581–599, July/August 2006.

[47] S. Fisher and M. C. Lin, “Deformed distance fields for simulation of
non-penetrating flexible bodies,” in Proc. of the Eurographic Workshop
on Computer Animation and Simulation, Manchester, UK, 2001, pp. 99–
111.

[48] Y. J. Kim, M. A. Otaduy, M. C. Lin, and D. Manocha, “Fast penetration
depth computation for physically-based animation,” in Proc. of Sympo-
sium on Computer Animation (SCA), 2002.

