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Abstract

We describe a model-based height controller for a hop-
ping robot with a pneumatically powered leg. The con-
troller explicitly models variation in the leg angle and
height. Using an explicit model of the physics of the
pneumatic spring and some symmetry assumptions, we de-
rive the desired leg-length setting to regulate apex hopping
height using a PD controller. Simulation experiments of
hopping in the sagittal plane show reasonable height reg-
ulation. For low-speed running, we take advantage of the
small variations in the leg angle about the vertical, and
demonstrate that the original symmetry assumptions may
be relaxed by restricting the leg angle to π/2. Simula-
tions show that the restricted model outperforms the origi-
nal model by a small but significant amount.

I. INTRODUCTION

The benefits of legged systems over other forms of ter-
restrial locomotion are obvious; they can navigate obstacles
which wheeled and treaded vehicles cannot. Dynamically-
stable legged systems have advantages over statically-
stable legged systems. Running machines can travel faster
and can navigate terrain which has points of support that are
spaced too far apart for walking machines to reach. Even
for the simplest running machine, a one-legged hopper, re-
search problems have not been completely explored.

Most running machines constructed thus far have served
as little more than existence proofs of different forms of
locomotion. We seek to contruct a running machine that
builds on basic locomotion with additional behaviors that
would be useful in a more functional robotic system. To
this end we have studied ways to improve the Raibert three-
part control system [1].

The hopping machine considered in this paper is like a
pogo-stick; it has a small foot and a leg spring. Unlike a
pogo-stick which uses a mechanical spring, the spring for
the hopper is pneumatic. The force curve for a mechanical
spring is different from a pneumatic spring; therefore the

model must take that into account. The machine analyzed
here is a planar hopper, i.e. its motion is restricted to the
sagittal plane.

The controller is based on Raibert’s three-part control
system [1]. This method decomposes the control into three
separate control loops: forward velocity control, body at-
titude control, and height control. Raibert controlled hop-
ping height by delivering a specified thrust value during
stance. The hopper would repeatedly reach a specific
apex height, where the energy injected during stance would
equal the energy lost due to friction and air resistance. The
experiments in this paper utilize the Raibert forward veloc-
ity and body attitude controllers; only the height controller
is changed.

As shown in Figure 1, a hopping cycle consists of four
phases. There are two flight phases, ascent and descent,
and two stance phases, compression and extension. The
height can be changed by setting the leg to an appropriate
length during descent. Changing the leg length effectively
changes the air spring constant. In this way, energy can be
added to or removed from the system to change the apex
height.

The height controller is the most difficult of the three.
The forward velocity controller acts only during flight to
position the foot in preparation for landing. The body atti-
tude controller acts only during stance to try and keep the
body level. The height controller tries to make the body
reach a specified apex height (halfway through the flight
phase), but the control inputs to do this must be finished
by the end of stance. Control inputs during flight before
the apex is reached will have little effect on the apex height
achieved.

This paper develops two model-based height controllers.
The first models flight and stance physics in the sagittal
plane, and the second takes advantage of the small variation
in leg angle during stance to form a simplified model. We
report results of height regulation experiments with both
controllers and evaluate their performance. Simulations



show that the second, simplified, model runs without cer-
tain symmetry assumptions needed in the first model, and
marginally outperforms it.

The paper is organized as follows. Related work is dis-
cussed in Section II. Section III describes the model-based
height controllers. Experimental results are presented in
Section IV. Conclusions and future work are discussed in
Section V.

II. RELATED WORK

A three-part control system has been used to control
monopod hopping robots [1]. One of the controllers used a
fixed duration thrust to regulate hopping height.

Proportional control has been used to regulate hopping
height in simulation [2]. For the Monopod II robot, an
adaptive energy feedback controller was used to control the
apex energy and thus the apex height [3].

A discrete closed form trajectory model was used to con-
trol a bow leg hopper [4]. Model parameters were exper-
imentally determined with a least squares fit to a set of
recorded trajectories.

A simulation of a vertical hopping machine was con-
trolled using a near-inverse discrete-time model [5]. Time-
varying or unknown parameters were estimated with a re-
cursive least-squares parameter estimator. Because the
model was able to update itself in this way, the controller
was much less sensitive to modeling errors and even abrupt
changes in physical parameters.

The controllers presented in this paper use trajectory
models that utilize the differential equations of motion
rather than discrete functions. The equations of motion
are numerically integrated to produce appropriate actua-
tor commands. This approach doesn’t require experimen-
tal determination of parameters, and unlike tabular control
doesn’t require storage of a large table of values.

III. HEIGHT CONTROLLERS

A diagram of the hopper model is shown in Figure 2.
Table I defines the subscripts used for the state variables,
Table II defines the state variables themselves, and Table
III defines the physical parameters of the hopper. Super-
scripts of k denote the kth hopping cycle. The leg stroke,
hip offset, and mass parameters are similar to those used by
Raibert for his planar hopper [1].

The detailed derivations for the equations presented in
this section can be found in [6] and [7].

The control loop functions as follows. At lift-off, the
controller solves equations of motion for the next five
phases: initial ascent, descent, compression, extension, and
final ascent. The goal is to control the apex height yk+1

max

reached at the end of the final ascent phase. The controller
uses state information at the beginning of initial ascent (lift-
off) and the goal apex height to calculate the proper leg

Fig. 2. 2D hopping machine in stance. The body is not shown.

td touch-down
lo lift-off
+ immediately after
− immediately before
d desired value

TABLE I

SUBSCRIPT DEFINITIONS.

length setting. As the hopper transitions from initial ascent
to descent, the leg setting is realized with a PD controller

τ = −KP (L − Ld) − KDL̇

where τ is the leg force command, and KP and KD

are proportional and derivative gains. Values for KP and
KD used in the simulations are 1300.0 N/m and 50.0
N/(m/s), respectively.

This leg position is maintained until touch-down, at
which point the actuator releases and the passive dynam-
ics of stance take over. At lift-off the cycle begins again.

A. Two-Dimensional Model

This model incorporates the leg angle and lateral velocity
effects. First we define the spring constant Ks

Ks = ApPsLmax. (1)



Fig. 1. Phase diagram of a hopping cycle.

L leg length (m)
y height of body c.m. (m)
ẏ body vertical velocity (m/s)
ẋ body horizontal velocity (m/s)
Ks spring constant (N ·m)
θ angle of leg measured from ground (rad)
θ̇ angular velocity of leg (rad/s)
I moment of inertia of body w.r.t. foot during stance (kg ·m2)

TABLE II

VARIABLE DEFINITIONS.

g gravitational acceleration −9.81 m/s2

µk viscous leg friction 5.0 N/s
dhip distance from hip to body c.m. 0.05 m
Lmax max leg length 0.285 m
ms sprung mass 8.375 kg
mu unsprung mass 0.225 kg
Ap area of piston 4.91 × 10−4 m2

P0 nominal pressure of upper leg chamber 4.0 × 102 kPa

TABLE III

PHYSICAL PARAMETERS OF THE HOPPER.



There are two equations of motion for compression and
extension

dL

dẏ
=

ẏ
(

Ks sin θ
msL

−
µkẏ
ms

+ g
)

sin θ
(2)

dθ

dẏ
=

θ̇k+1

lo L2
max

(

Ks sin θ
msL

−
µkẏ
ms

+ g
)

L2

(3)

where

θ̇k+1

lo =
ẋk+1

lo−
sin (π − θk+1

lo ) + ẏk+1

lo−
cos (π − θk+1

lo )

Lmax

.

The vertical velocity ẏk+1

lo−
is calculated below. Because

of the simplifications made in this model, we cannot deter-
mine ẋk+1

lo−
and θk+1

lo , so we invoke symmetry considera-
tions and use the measured values from the previous hop

θ̇k+1

lo ≈
ẋk

lo−
sin (π − θk

lo) + ẏk+1

lo−
cos (π − θk

lo)

Lmax

.

Equations 2 and 3 are integrated backwards in time from
lift-off to touch-down. Initial conditions at lift-off are given
by

Llo = Lmax

ẏk+1

lo−
=

(

ms + mu

ms

)

ẏk+1

lo+

where

ẏk+1

lo+ =

√

2g(yk+1

lo − yk+1
max)

and
yk+1

lo = (Lmax + dhip) sin θk+1

lo .

We also need a final condition for ẏ at touch-down

ẏk+1

td = −

√

2g(yk+1

td − yk
max)

where

yk
max = −

(

ẏk
lo+

)2

2g
+ yk

lo,

ẏk
lo+ =

(

ms

ms + mu

)

ẏk
lo− ,

and
yk

lo = (Lmax + dhip) sin θk
lo.

As described in [7], the desired height at touch-down
yk+1

td is approximated by

yk+1

td ≈
(

Lk
td + dhip

)

sin θk
td

where Lk
td is the leg length of the previous touch-down, and

θk
td is the touch-down angle in the previous cycle.

Equations 2 and 3 are integrated over ẏ to find Lk+1

td , our
desired leg length setting. A Runge-Kutta algorithm de-
scribed in [8] is used to perform the numerical integration,
and converges in six or seven steps to a solution within a
0.01% relative error tolerance.

At the top lateral velocities studied in these experiments,
the leg sweeps through a rather small angle during stance,
approximately ±15 degrees. The next section makes use of
this fact, producing a simpler model. This is accomplished
by setting θ = π/2.

B. Reduced One-Dimensional Model

We now model only the vertical motion of the hopper,
and ignore the effects of the leg angle and lateral velocity.
The spring constant Ks is defined in Equation 1.

The equation of motion for compression and extension
is given by

dL

dẏ
=

ẏ
Ks

msL
−

µkẏ
ms

+ g
. (4)

This equation is integrated backwards in time from lift-
off to touch-down. Initial conditions at lift-off are given
by

Lk+1

lo = Lmax

ẏk+1

lo−
=

(

ms + mu

ms

)

ẏk+1

lo+

where

ẏk+1

lo+ =

√

2g(ylo − yk+1
max)

and
ylo = Lmax + dhip. (5)

We also need a final condition for ẏ at touch-down

ẏk+1

td = −

√

2g(yk+1

td − yk
max)

where

yk
max = −

(

ẏk
lo+

)2

2g
+ yk

lo,

ẏk
lo+ =

(

ms

ms + mu

)

ẏk
lo− ,

and ylo is given in Equation 5.
As described in [6], the desired height at touch-down

yk+1

td is approximated by

yk+1

td ≈ Lk
td + dhip

where Lk
td is the leg length of the previous touch-down.



Desired Apex Avg. Abs. Avg. Rel.
Height (m) Error (cm) Error (%)

2D Model 0.5 0.62 1.24
0.45 0.40 0.89

1D Model 0.5 0.21 0.42
0.45 0.13 0.28

TABLE IV

ABSOLUTE AND RELATIVE ERRORS IN APEX HEIGHT.

Equation 4 is integrated over ẏ to find Lk+1

td , our desired
leg length setting. A Runge-Kutta algorithm described in
[8] is used to perform the numerical integration, and con-
verges in six or seven steps to a solution within a 0.01%
relative error tolerance.

IV. EXPERIMENTS

Two sets of experiments were performed in simulation.
Each experiment was run twice, once for each height con-
troller.

The first set involves only vertical hopping. The hop-
per was dropped from a height of 0.75 m and given de-
sired apex heights in a piece-wise constant fashion. Figure
3 shows the results of these experiments. Note that going
from a high to low height takes many more hops than go-
ing from low to high. This is a consequence of our actuator
model. Note that having the leg at maximum extension will
produce the smallest possible spring constant, assuming the
quantity of air in the cylinder remains constant. If the hop-
per continues to hop with this leg extension, energy will be
gradually lost to friction. This is what happens when we
go from high to low apex heights. If friction were greater,
the system would lose energy faster. Increasing energy is
easier to do, by simply shortening the leg, thereby creat-
ing a larger spring constant. In a real robot, exhausting
air from the actuator to provide a smaller range of spring
constants would allow faster convergence from high to low
apex heights.

For the second set, the hopper was given a constant de-
sired apex height while the desired lateral velocity was
slowly ramped up. The results of trials with two differ-
ent desired apex heights are shown in Figure 4. Average
absolute errors and average relative errors in apex height
are shown in Table IV.

V. CONCLUSIONS AND FUTURE WORK

Table IV shows that the restricted 1D model actually per-
forms better than the 2D model. Although the 2D model
is closer to the actual physics of the system than the 1D
model, there are more unknown boundary conditions for
the stance phase in the 2D model. This leads to making
more assumptions than we had to do for the 1D model. We
hypothesize that the error introduced in these assumptions

outweighs the benefit gained by additional fidelity to the
true physics in the model itself.

We have shown that both the 2D model and simplifed 1D
model can accurately regulate apex height on the simulated
hopper with a variety of lateral speeds. Since the model
solutions both converge so quickly, implementation on a
real robot is feasible.

Future work in simulation includes 3D simulations and
the introduction of sensor and actuator noise. We will also
test the height controllers on a real hopping robot, which is
being constructed.
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(a) 2D model
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(b) 1D model

Fig. 3. Vertical hopping. Each circle denotes an apex height, and the dashed line represents the desired apex height profile.
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(a) 2D model, 0.5 m desired apex height
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(b) 2D model, 0.45 m desired apex height
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(c) 1D model, 0.5 m desired apex height
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(d) 1D model, 0.45 m desired apex height

Fig. 4. Lateral hopping.


