
Appears in the Proceedings of the 1992 IEEE Conference on Robotics and Automation (ICRA-92), pp. 2719Ð2724.

SSS: A Hybrid Architecture Applied to Robot Navigation

Jonathan H. Connell

IBM T.J. Watson Research Center, Box 704, Yorktown Heights NY 10598

Abstract

This paper describes a new three layer architecture, SSS,
for robot control. It combines a servo-control layer, a
Òsubsumption" layer, and a symbolic layer in a way that
allows the advantages of each technique to be fully
exploited. The key to this synergy is the interface between
the individual subsystems. We describe how to build
situation recognizers that bridge the gap between the servo
and subsumption layers, and event detectors that link the
subsumption and symbolic layers. The development of
such a combined system is illustrated by a fully
implemented indoor navigation example. The resulting real
robot, called ÒTJ", is able automatically map office
building environments and smoothly navigate through
them at the rapid speed of 2.6 feet per second.

1: Introduction

In the ÒSSS" architecture (an acronym for Òservo,
subsumption, symbolic" systems) we have tried to
combine the best features of conventional servo-systems
and signal processing, with multi-agent reactive controllers
and state-based symbolic AI systems.

For instance, servo-controllers have trouble with many
real-world phenomena which are not understood well
enough to be modelled accurately or which are non-linear.
Behavior-based or subsumption systems (e.g. [2, 5]), on
the other hand, do not impose as many modelling
constraints on the world and are good at making rapid,
radical decisions. Yet such systems often yield jerky
motions due to their slow sample rate and their discrete
view of the world. This shortcoming can in turn be easily
rectified by adding appropriate servo-systems which are
particularly good at making smooth motions.

Behavior-based systems also have problems with world
modelling and persistent state. Since behavior-based
systems are often implemented in a distributed fashion,
there is no good place to put a world model. Indeed, many
of the adherents of this school claim that this is a

beneficial feature of such systems [3]. However, for some
tasks, such as navigation, it is certainly convenient  to
have higher-level centralized representations. This is the
fort� of standard hierarchical symbolic programming
languages. The usual stumbling block of such systems,
real-time control, can be finessed by delegating tactical
authority to the subsumption and servo control layers.

Subsumption

Symbolic

    event
detectors

∆s, ∆t        process
parametrization

Servo

    situation
recognizers

 setpoint
selection

Sensors Actuators

∆s, dt

ds, dt

Figure 1 - The SSS architecture combines 3 control
techniques which can be characterized by their treatment of
time and space. Special interfaces allow the layers of this
system to cooperate effectively.

The three layers in our system come from progressively
quantizing first space then time. As shown in figure 1, the
servo-style system basically operates in a domain of
continuous time and continuous space. That is, these
systems constantly monitor the state of the world and
typically represent this state as an ensemble of scalar
values. Behavior-based system also constantly check their
sensors but their representations tend to be special-purpose
recognizers for certain types of situations. In this way



behavior-based systems discretize the possible states of the
world into a small number of special task-dependent
categories. Symbolic systems take this one step further and
also discretize time on the basis of significant events. They
commonly use terms such as Òafter X do Y" and Òperform
A until B happens". Since we create temporal events on
the basis of changes in spatial situations, it does not make
sense for us to discretize time before space. For the same
reason, we do not include a fourth layer in which space is
continuous but time is discrete.

In order to use these three fairly different technologies we
must design effective interfaces between them. The first
interface is the command transformation between the
behavior-based layer and the underlying servos.
Subsumption-style controllers typically act by adjusting
the setpoints of the servo-loops, such as the wheel speed
controller, to one of a few values. All relevant PID
calculations and trapezoidal profile generation are then
performed transparently by the underlying servo system.

The sensory interface from a signal-processing front-end
to the subsumption controller is a little more involved. A
productive way to view this interpretation process is in the
context of Òmatched filters" [16, 6]. The idea here is that,
for a particular task, certain classes of sensory states are
equivalent since they call for the same motor response by
the robot. There are typically some key features that, for
the limited range of experiences the robot is likely to
encounter, adequately discriminate the relevant situations
from all others. Such Òmatched filter" recognizers are the
mechanism by which spatial parsing occurs.

The command interface between the symbolic and
subsumption layers consists of the ability to turn each
behavior on or off selectively [7], and to parameterize
certain modules. These event-like commands are Òlatched"
and continue to remain in effect without requiring constant
renewal by the symbolic system.

The sensor interface between the behavior-based layer and
the symbolic layer is accomplished by a mechanism which
looks for the first instant in which various situation
recognizers are all valid. For instance, when the robot has
not yet reached its goal but notices that it has not been
able to make progress recently, this generates a Òpath-
blocked" event for the symbolic layer. To help decouple
the symbolic system from real-time demands we have added
a structure called the Òcontingency table". This table allows
the symbolic system to pre-compile what actions to take
when certain events occur, much as baseball outfielders
yell to each other Òthe play's to second" before a pitch. The
entries in this table reflect what the symbolic system
expects to occur and each embodies a one-step plan for
coping with the actual outcome.

Figure 2 - TJ has a 3-wheeled omni-directional base and uses
both sonar ranging and infrared proximity detection for
navigation. All servo-loops, subsumption modules, and the
contingency table are on-board. The robot receives path
segment commands over a spread-spectrum radio link.

2: The navigation task

The task for our robot (shown in figure 2) is to map a
collection of corridors and doorways and then rapidly
navigate from one office in the building to another. To
accomplish this we had to address two basic navigation
problems. The first of these is compensating for the
variability of the environment. There are often people in
the halls, doors open and close by random amounts, some
days there are large stacks of boxes, and the trash cans are
always moving around.

We solve the variability problem by restricting ourselves
to very coarse geometric maps. We record only the distance
and orientations between relevant intersections. The actual
details of the path between two points are never recorded,
thus there are never any details to correct. However, to
make use of such a coarse map the robot must be able to
reliably follow the segments so described [4]. Fortunately,
behavior-based systems are particularly good at this sort of
local navigation.

The other basic navigation problem is knowing when
the robot has arrived back in a place it has been before. The
difficulty is that, using standard robot sensory systems, an
individual office or particular intersection is not
distinguishable from any other. One approach is to use
odometry to determine the absolute position of the robot.



However, it is well known that over long distances such
measurements can drift quite severely due to differing
surface traction and non-planar areas.

We solve the loop problem by exploiting the geometry
of the environment. In most office buildings all corridors
are more or less straight and meet at right angles. Therefore
we measure the length of each path segment and treat this
as a straight line. Similarly, when the robot switches from
one path to another we force the turn to be a multiple of
90 degrees. This is essentially an odometric representation
which is recalibrated in both heading and travel distance at
each intersection. In this way we maintain a coarse (x, y)
position estimate of the robot which can be compared to
the stored coordinates of relevant places.

2.1: Tactical navigation

Tactical, or moment-to-moment control of the robot is
handled by the servo and subsumption layers of our
architecture. The servo layer consists of two velocity
controllers, one for translation and one for rotation, on the
robot base. These proportional controllers operate at 256
Hz and have acceleration-limited trapezoidal profiling.

Built on top of these servo-controllers are various
reactive behaviors which run at a rate of 7.5Hz. One of the
more important of these is wall following. For this we use
a carefully arranged set of side-looking infrared proximity
detectors. The method for deriving of specific responses for
each sensory state is detailed in [4, 6] for similar systems.
While some researchers have tried to fuse sensory data over
time and then fit line segments of it, most Òwalls" that we
want to follow are not really flat. There are always gaps
caused by doors, and often junk in the hall that makes the
walls look lumpy. This is the same reason we did not try
to implement this activity as a servo-controller: it is very
hard to directly extract angle and offset distance from the
type of sensory information we have available. The
matched filter approach lets us get way with only partial
representations of the environment relative to the robot.

There are also two tactical navigation modules based on
odometry. The first of these looks at the cumulative travel
and slows or stops the robot when the value gets close to a
specified distance. A similar setup exists based on the
average heading of the robot. The average heading is
computed by slowly shifting the old average heading value
toward the robot's current direction of travel. If the robot is
only turning in place the average heading does not change,
but after the robot has travelled about 5 feet in a new
direction the value will be very close to the actual heading.
A special behavior steers the robot to keep this Òtail"
straight behind, which in turn causes the robot to remain
aligned with its average heading. This is very useful for

correcting the robot's direction of travel after it has veered
around an obstacle. If the detour is short, the average
heading will not have been affected much.

The average heading signal provides an interesting
opportunity for the symbolic system to deliberately Òfake
out" the associated behaviors. For instance, the symbolic
system can cleanly specify a new direction of travel for the
robot by yanking around the robot's Òtail".  This method is
better than commanding the robot to follow a new absolute
direction, especially for cases in which the robot was not
aligned precisely with the original corridor or in which the
new corridor seems to bend gradually (in actuality or from
odometric drift). Instead of forcing the robot to continually
scrape its way along one wall or the other, the average
heading will eventually adjust itself to reflect the direction
along which progress has been made and thereby allow the
robot to proceed smoothly.

Although they sound like servo-controllers, the two
odometric behaviors were put in the subsumption layer for
two reasons. First, they do not require fine-grained error
signals. The alignment behavior is quiescent if the robot is
Òclose" to the right heading, and the travel behavior only
slows the robot when it is Ònear" the goal. Second, and
more importantly, we wanted these behaviors to interact
with other subsumption behaviors. For example, the
alignment behavior takes precedence over the part of wall
following that moves the robot closer to a surface,
however it is not as important as collision avoidance.
Many of these other behaviors are necessarily cast in a
subsumption style framework because of the limited
quality of sensory information available. Thus, to
accommodate the appropriate dominance relations, the
alignment and travel limiting behaviors were also included
in this layer.

2.2: Strategic navigation

The strategic part of navigation Ð where to go next Ð is
handled by the symbolic layer. To provide this
information, our symbolic system maintains a coarse
geometric map of the robot's world. This map consists of a
number of landmarks, each with a type annotation,  and a
number of paths between them, each with an associated
length. The landmarks used in the map are the sudden
appearance and disappearance of side walls. These are
detected by long range IR proximity detectors on each side
of the robot. Normally, in a corridor the robot would
continuously perceive both walls. When it gets to an
intersection, suddenly there will be no wall within range of
one or both of these sensors. Similarly, when the robot is
cruising down a corridor and passes an office, the IR beam
will enter the room far enough so that no return is detected.



Once a map has been created, an efficient route can be
plotted by a spreading activation algorithm [10] or some
other method. To traverse this route, the symbolic system
enables whatever collection of subsumption modules it
deems appropriate for the first segment and parameterizes
their operation in appropriate ways. The symbolic system
does not need to constantly fiddle with the subsumption
layer, it only has to reconfigure the layer when specific
events occur. In our navigation example, this typically
happens when the robot has reached the end of one path
segment and needs to have its course altered to put it on
the next segment. In this case, the alteration of
subsumption parameters must be swift or the robot will
overshoot the intersection. To relieve this real-time burden
from the symbolic system we create a Òcontingency table"
such as shown in figure 3 (in pseudo-LISP code). This
structure is similar to the Òevent dispatch" clauses in the
original subsumption architecture [2].

  (do-until-return

    (setq recognizers (check-situations))

    (cond ((and (near-distance? recognizers)

                (aligned-okay? recognizers)

                (left-opening? recognizers))

           (inc-heading! 90)

           (new-travel! 564)

           (return recognizers))

          ((beyond-distance? recognizers)

           (inc-heading! 180)

           (new-travel! 48)

           (return recognizers))

          ((no-progress? recognizers)

           (disable! stay-aligned)

           (enable! scan-for-escape)

           (return recognizers))

          (t nil)))

Figure 3 - The Òcontingency table" continuously monitors a
collection of special-purpose situation recognizers. When a
specified conjunction occurs, this Òevent" causes a new set of
permissions and parameters to be passed to the subsumption
system. After this, the symbolic system builds a new table.

      
The contingency table allows the symbolic system to

specify a number of events and what response to make in
each case. As suggested by the code, this contingency table
module continually checks the status of a number of
special-purpose situation recognizers. When one of the
listed conjunctions occurs, the module performs the
specified alterations to the subsumption controller then
returns the triggering condition to the symbolic system. If
two or more events occur simultaneously, the action for

the one listed first is taken. After this one burst of activity
the old contingency table is flushed and the symbolic
system is free to load an entirely new table.

For the navigation application, the contingency table
includes a check for an opening in the correct direction at
an appropriate path displacement, along with commands to
reset the orientation and travel distances for the next path
segment (see figure 3). Notice that the robot also checks to
make sure it is aligned with the average heading when it
observes an IR opening to the left. This is to keep the
robot from mistakenly triggering the next subsumption
configuration just because the IR signal happened to
vanish as the robot was veering around some obstacle in
its path.

3: Experimental results

Our first experiment was aimed at validating the claim that
environmentally constrained odometry allows us to solve
the loop navigation problem. For this we provided the
robot with a rough path to follow of the the form: ((travel1
turn1) (travel2 turn2) ...). Travel was specified as an
integral number of inches and turns were specified as an
integral number of degrees. The top half of figure 4 shows
the path the robot took according to its odometry. The
circles with small projections indicate where the robot
observed openings in the directions indicated. The circles
are the same size as the robot (12 inches diameter) to
provide scale. Notice that neither of the loops appears to be
closed. Based on this information it is questionable
whether the corridor found in the middle of the map is the
same one which the robot later traversed.

The symbolic map, which appears in the lower half of
figure 4, correctly matches the important intersections to
each other. In this map, nodes are offset slightly to the side
of the path segments. Each node's type is denoted
iconically as a corner Ð two short lines indicating the
direction of the opening and the direction of free travel.
This symmetry reflects the fact that the robot is likely to
perceive the same corner when coming out through the
marked aperture. Corner nodes are placed at the robot
position where they are sensed; no adjustment is made for
the width of the corridor. This is partially compensated by
a wide tolerance in matching nodes.

When a new opening is detected the robot compares it
with all the other nodes in the map that have similar
opening directions. If there is a match which is no more
than 6 feet from the robot's current position in either x  or
y, the new opening is considered to be a sighting of the old
node. In this case we average the positions of the robot and
the node and move both to this new location. This
merging operation is why the corridors do not look



perfectly straight in the symbolic map. However, when the
robot is instructed to follow the same path a second time
and update the map, the changes are minimal.

Figure 4 - Geometric constraints of the environment allow
the robot to build maps with loops despite poor absolute
odometry. The top picture shows the path the robot thought it
took. The hair-like projections indicate openings it sensed.
The lower picture shows the map the robot built during this
exploration.

The second experiment shows that the subsumption
system is sufficiently competent at local navigation to
allow the use of a coarse geometric map. In this
experiment we had the symbolic system plan a path (from
node 10 to node 5) using the map it generated in the first
part. We then told it to configure the two lower layers of
the architecture to follow this path. The result of five
consecutive runs is shown in figure 5. The displayed paths
are based on the robot's odometry and hence do not
accurately reflect the robot's true position in space over

large displacements. However, the local details are
qualitatively correct (some of the angularity is due to the
time lag between successive position readings). On
different runs we started the robot in slightly different
directions. We also altered the positions of various
obstacles along the path and changed the states of some of
the doors on the corridor. This lead to slightly different
forms for each of the runs. Despite these variations in
initial heading and the configuration of the environment,
the symbolic system was able to successfully navigate the
robot to its goal in all 5 runs.

Figure 5 - These traces illustrate the odometrically perceived
path of the robot on 5 consecutive runs along the same path.
Notice that the wiggles along each segment are different since
obstacles were moved and doors were altered between runs. To
the symbolic system, however, all runs seemed identical.

4: Discussion

The SSS architecture is related to a number of recent
projects in robot control architectures. The greatest degree
of similarity is with the ATLANTIS system developed at
JPL [11, 9]. In this system there is a subsumption-style
Òcontrol" layer, an operating system-like Òsequencing"
layer, and a model-building Òdeliberative" layer. As in our
navigation scheme, this system delegates the task of
following a particular path segment control to a behavior-
based system while using a rough topological map to
specify the turns between segments. A mobile robot
developed at Bell labs [15] also uses this same task
decomposition as does the AuRA system [1] from
UMASS Amherst.

However, in ATLANTIS (and in RAPs [8], its
intellectual predecessor) each of the behaviors in the



subsumption controller is associated with some Ògoal" and
can report on its progress toward achievement of this
objective. A control system developed at Hughes [13] also
requires a similar signalling of process Òfailures". The
problem with this type of system is that detecting true
failures at such a low level can be difficult. In our system,
external occurrences, not the internal state of some
subsidiary process, determine when the behavior-based
system is reconfigured.

ATLANTIS also places much more emphasis on the
sequencer layer than we do. In ATLANTIS the deliberative
layer essentially builds a partially ordered Òuniversal plan"
[14] which it downloads to the sequencer layer for
execution. Similarly, one of the control systems used on
HILARE [12] generates off-line a Òmission" plan which is
passed to a supervisor module that slowly doles out pieces
to the Òsurveillance manager" for execution. In such
systems, the symbolic system is completely out of the
control loop during the actual performance of the prescribed
task. This exclusion allows for only simple fixes to plans
and makes it difficult to do things such as update the
traversability of some segment in the map. In contrast, the
contingency table in the SSS system only decouples the
symbolic system from the most rapid form of the decision
making Ð the symbolic system must still constantly replan
the strategy and monitor the execution of each step.

In summary, with our SSS system we have attempted to
provide a recipe for constructing fast-response, goal-directed
robot control systems. We suggest combining a linear
servo-like system, a reactive rule-like system, and a
discrete-time symbolic system in the same controller. This
is not to say a good robot could not be built using just one
of these technologies exclusively. We simply believe that
certain parts of the problem are most easily handled by
different technologies. To this end we have tried to explain
the types of interfaces between systems that we have found
to be effective. To summarize, the upward sensory links
are based on the temporal concepts of situations and
events, while the downward command links are based on
parameter adjustment and setpoint selection.

The SSS architecture has been used for indoor navigation
and proved quite satisfactory. Developing a robot which
moves at an average  speed of 32 inches per second (the
peak speed is higher), but which can still reliably navigate
to a specified goal, is a non-trivial problem. It required
using a subsumption approach to competently swerve
around obstacles, a symbolic map system to keep the robot
on track, and a number of servo controllers to make the
robot move smoothly.

We plan to extend this work to a number of different
navigation problems including the traversal of open
lobbies, movement within a particular room, and outdoors

patrol in a parking lot. We also intend to use a similar
system to acquire and manipulate objects using a larger
mobile robot with an on-board arm.

References

[ 1 ] Ronald C. Arkin, ÒMotor Schema Based Navigation for
a Mobile Robot", Proceedings of the IEEE Conference
on Robotics and Automation, 264Ð271, 1987.

[ 2 ] Rodney Brooks, ÒA Layered Intelligent Control System
for a Mobile Robot", IEEE Journal Robotics and
Automation, RA-2, 14-23, April 1986.

[ 3 ] Rodney  Brooks ,  Ò In t e l l i gence  w i thou t
Representation", Artificial Intelligence,  vol. 47, 139Ð
160, 1991.

[ 4 ] Jonathan H. Connell, ÒNavigation by Path
Remembering", Proceedings of the 1988 SPIE
Conference on Mobile Robots, 383Ð390.

[5]  Jonathan H. Connell, Minimalist Mobile Robotics: A
Colony-style Architecture for a Mobile Robot,
Academic Press, Cambridge MA, 1990 (also MIT TR-
1151).

[ 6 ] Jonathan H. Connell, ÒControlling a Robot Using
Partial Representations", Proceedings of the 1991 SPIE
Conference on Mobile Robots, (to appear).

[7] Jonathan H. Connell and Paul Viola, ÒCooperative
Control of a Semi-autonomous Mobile Robot",
Proceedings of the IEEE Conference on Robotics and
Automation, Cincinnati OH, 1118Ð1121, May 1990.

[ 8 ] R. James Firby, ÒAn Investigation into Reactive
Planning in Complex Domains", Proceedings of AAAI-
87,  202Ð206, 1987.

[ 9 ] Erann Gat, ÒTaking the Second Left: Reliable Goal-
Directed Reactive Control for Real-world Autonomous
Mobile Robots", Ph.D. thesis, Virginia Polytechnic
Institute and State University, May 1991.

[ 1 0 ] Maja J. Mataric, ÒEnvironment Learning Using a
Distributed Representation", Proceedings of the IEEE
Conference on Robotics and Automation, 402Ð406,
1990.

[ 1 1 ] David P. Miller and Erann Gat, ÒExploiting Known
Topologies to Navigate with Low-Computation
Sensing", Proceedings of the 1991 SPIE Conference on
Sensor Fusion, 1990.

[ 1 2 ] Fabrice R. Noreils and Raja G. Chatila, ÒControl of
Mobile Robot Actions", Proceedings of the IEEE
Conference on Robotics and Automation, 701Ð707,
1989.

[ 1 3 ] David W. Payton, ÒAn Architecture for Reflexive
Autonomous Vehicle Control", Proceedings of the IEEE
Conference on Robotics and Automation, 1838Ð1845,
1986.

[ 1 4 ] Marcel Schoppers, ÒUniversal Plans for Reactive
Robots in Unpredictable Environments", Proceedings
of IJCAI-87, Milan Italy, 1039Ð1046, August 1987.

[ 1 5 ] Monnett Hanvey Soldo, ÒReactive and Preplanned
Control in a Mobile Robot", Proceedings of the IEEE
Conference on Robotics and Automation, Cincinnati
OH, 1128Ð1132, May 1990.

[ 1 6 ] R�diger Wehner, ÒMatched Filters - Neural Models of
the External World", Journal of Comparative
Physiology, 161:511-531.


