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Abstract

The mobile robot localization problem is decomposed into

two stages; attitude estimation followed by position esti-

mation. The innovation of our method is the use of a

smoother, in the attitude estimation loop that outperforms

other Kalman �lter based techniques in estimate accu-

racy. The smoother exploits the special nature of the data

fused; high frequency inertial sensor (gyroscope) data and

low frequency absolute orientation data (from a compass

or sun sensor). Two Kalman �lters form the smoother.

During each time interval one of them propagates the at-

titude estimate forward in time until it is updated by an

absolute orientation sensor. At this time, the second �l-

ter propagates the recently renewed estimate back in time.

The smoother optimally exploits the limited observability

of the system by combining the outcome of the two �lters.

The system model uses gyro modeling which relies on in-

tegrating the kinematic equations to propagate the atti-

tude estimates and obviates the need for complex dynamic

modeling. The Indirect (error state) form of the Kalman

�lter is developed for both parts of the smoother. The pro-

posed approach is independent of the robot structure and

the morphology of the ground. It can easily be transfered

to another robot which has an equivalent set of sensors.

Quaternions are used for the 3D attitude representation,

mainly for practical reasons discussed in the paper. The

proposed innovative algorithm is tested in simulation and

the overall improvement in position estimation is demon-

strated.

1 Introduction

In this paper we consider the problem of localizing a

mobile robot on uneven terrain. Speci�cally, we are mo-

tivated by the problem of localizing the next generation
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of robot rovers [11] on the surface of Mars. The unique

constraints of the problem are, 1. No Global Positioning

System (GPS) is available, 2. Absolute orientation of the

robot can only be sensed intermittently and 3. While in

motion, rates of roll, pitch and yaw available from gyro-

scopes are subject to drift and noise. We present here,

a localization algorithm subject to these constraints that

generalizes across di�erent mobile robot platforms with

varying kinematics and dynamics. Future missions to

Mars will demand long traverses (several km) of rovers to

sites of scienti�c interest. In order to autonomously per-

form their scienti�c tasks, these rovers need to localize

themselves. It should be noted, however, that localiza-

tion is a problem that concerns every autonomous vehi-

cle. The two basic techniques that have been developed

to tackle this problem are: 1. Relative (local) localiza-

tion which consists of evaluating the position and orien-

tation through integration of encoder and inertial sensor

data. The integration is started from the initial position

and orientation and is continuously updated in time. This

technique is often called dead-reckoning and relies either

on odometry (wheel encoders) or inertial navigation sys-

tems (gyroscopes and accelerometers). Though the tech-

nique is simple, it is prone to error due to imprecision in

modeling, noise, drift and slip. Substantial improvement

is provided by applying Kalman �ltering techniques [10];

2. Absolute (global) localization which permits the

robot to determine its position directly using navigation

beacons, active or passive landmarks, map matching or

satellite-based signals like GPS. Global sensor measure-

ments can drastically increase the accuracy of the esti-

mate and keep the associated uncertainty within certain

bounds.

In this paper we address the problem of 3D localiza-

tion for mobile robots in the absence of absolute posi-

tioning information. We concentrate on bounding the

attitude uncertainty through periodic use of absolute at-

titude measurements. As a consequence the position es-

timate degrades slowly compared to the case when no ab-



solute orientation information is available. The attitude

estimate relies on the gyros when the vehicle is in mo-

tion while a tri-axial accelerometer is used as an absolute

orientation measuring device (roll and pitch) in conjunc-

tion with a sun sensor (yaw) when the vehicle is at stop.

At the end of each interval of motion a smoother is used

which propagates the new absolute orientation informa-

tion backwards using the previously acquired gyro infor-

mation. This lowers the uncertainty of the attitude esti-

mate throughout the interval of smoothing; that is when

the vehicle was in motion. Both the forward and back-

ward estimators are Indirect (error state) Kalman �lters

and gyro modeling is used instead of a dynamic model of

the robot. Smoothing (which is being applied to mobile

robot localization for the �rst time), has been successfully

used in the post-ight construction of the attitude pro�le

of a spacecraft in order to support the integration of data

from a space-born sensor like a camera for example.

In the next section we survey previous work in robot

localization. Section 3 examines the dependence of the

position estimate on the attitude estimate. We discuss

the various attitude measuring devices used, the ratio-

nale behind dynamic model replacement and the Indirect

Kalman �lter and a basic gyro model. Section 4 contains

a derivation of the error state equations for the 3-D case

using unit quaternions. The linear time-variant equations

of the system model and the non-linear equations of the

observation model are derived. An Indirect Kalman �lter

based on these models is developed. The improvement

due to the smoother is demonstrated. Section 5 shows

how the position is updated using the improved attitude

estimates and section 6 summarizes the contributions of

this work and discusses future avenues of research.

2 Previous Work

In order to deal with systematic errors in indoor ap-

plications, a calibration technique called the UMBmark

test is given in [3]. [4] discusses a technique called gy-

rodometry, which uses odometry data most of the time,

while substituting gyro data only during brief instances

(e.g. when the vehicle goes over a bump) during which

gyro and odometry data di�er drastically. This way the

system is kept largely free of the drift associated with the

gyroscope. A complementary Kalman �lter [6] is used in

[9] to estimate the robot's attitude from the accelerometer

signal during low frequency motion and the gyro signal

during high frequency motion. The attitude information

is then used to calculate a position increment. In [1] the

authors use a low cost INS system (3 gyroscopes, and a

triaxial accelerometer) and 2 tilt sensors. Their approach

is to incorporate in the system a priori information about

the error characteristics of the inertial sensors and to use

this directly in an Extended Kalman Filter (EKF) to es-

timate position.

Examples of absolute localization include [14] in which

the localization algorithm is formalized as a tracking

problem, employing an EKF to match beacon observa-

tions to a map in order to maintain an estimate of the

position of the mobile robot; [2] in which the authors use

an EKF to fuse odometry and angular measurements of

known landmarks and [23] in which a Bayesian approach

is used to learn useful landmarks for localization.

Most of the above approaches limit themselves to the

case of planar motion. In addition, their accuracy de-

pends heavily on the presence of some form of an abso-

lute positioning system. We consider motion on uneven

terrain (3D localization) and propose an estimation algo-

rithm that is capable of incorporating absolute position

measurements but is also able to provide reliable esti-

mates in the absence of externally provided positioning

information. Our method performs attitude estimation

using an Indirect Kalman �lter that operates on the er-

ror state.

3 Localization and Attitude Estimation

In this section we examine the relation between the at-

titude estimate and the position estimate. We use an

experimental Mars rover prototype (Rocky 7 [11]) as the

motivating example throughout this paper. The assump-

tion is that the robot has wheel encoders, 3 gyros, 3

accelerometers and a sun sensor. Since there is no de-

vice measuring the absolute position of the rover (there

is no GPS on Mars), the position can only be estimated

through the integration of the accelerometer signal which

has bias and noise. Consider also, that the propagation

of the position relies upon the attitude estimate. Small

errors in orientation fast become large errors in position.

Formally speaking, the position is not observable and thus

the uncertainty of its estimate will grow unbounded. The

most promising course of action with this set of sensors

is to focus on gaining a very precise attitude estimate.

As a result the position uncertainty will grow at a slower

rate. The attitude estimate is used twice during position

estimation:

1. The accelerometer measures both the vehicle's accel-

eration and the projection of the gravitational accel-

eration on the accelerometer local frame. The rela-

tion between these is described by:

~�p(t) = ~f (t)=m = ~aacc(t)� A(q(t))~g (1)

where ~�p is the vehicle's (non-gravitational) acceler-

ation, ~aacc is the measurement from the 3-axis ac-

celerometer and ~g is the gravitational acceleration.

Precise knowledge of the orientation matrix A(q) is

mandatory to extract ~�p accurately.



2. The next step requires integration of ~�p to derive the

position. ~�p is local (i.e. expressed in a coordinate

frame attached to the robot) and in order to calcu-

late the position in global coordinates the attitude

information is once again required:

~p(t) =

Z
t

0

dt0
Z

t
0

0

A(q(t00))~�p(t00)dt00 (2)

3.1 Attitude Measuring Devices

The on-board gyroscopes can be used to calculate the

attitude of the vehicle by integrating their signal. On

the other hand, the sun sensor directly measures the val-

ues of the two components of a two-dimensional vector.

This vector is the projection of the unit vector towards

the sun on the sun sensor plane. Another sensory input

of the same nature is required in order to satisfy atti-

tude observability requirements. While the accelerometer

is mainly used to advance the position estimate (Equa-

tions 1,2) it can also be used in an alternative way. An

accelerometer can measure the local gravitational accel-

eration, a three-dimensional vector parallel to the local

vertical. This provides another orientation �x indepen-

dent from the sun and thus makes the vehicle's attitude

observable. When the vehicle is stopped the accelerom-

eter measures only the gravitational acceleration namely

~aacc = A(q)~g. The roll and pitch of the vehicle can thus

be precisely calculated. The sun sensor provides the yaw

measurement and thus the matrix A(q) is observable and
precisely known when at stop.

This method fails when the rover is in motion. The

gravity vector is then \contaminated" by the non-

gravitational acceleration of the vehicle (Equation 1).

The gravity vector could be extracted while the vehicle is

moving if an independent measurement of its own accel-

eration was available. Research e�orts [24, 9] have tried

to address this problem using additional information from

odometry. We believe that these approaches are su�cient

for indoor applications and can deal with cases of motion

over small objects but are not accurate enough for gen-

eral outdoor environments mainly because of the limited

accuracy of the estimates of the non-gravitational accel-

eration. A more thorough consideration of the problem

would require dynamic modeling of the vehicle. An esti-

mator that incorporates a dynamic model of the vehicle

[21] could estimate its non-gravitational accelerations.

3.2 Dynamic Model Replacement

In our approach we avoid dynamic modeling and restrict

ourselves to use the accelerometer only when the

rover is at stop. The reasons for avoiding dynamic

modeling are: 1. generality, 2. practical estimator size,

3. reported poor payo�s [12] due to dynamic modeling,

and 4. complexity. Due to space constraints, we do not

discuss these further, the interested reader is referred to

[19, 20] for further details.

3.3 The Indirect-feedback Kalman Filter

As mentioned before, Kalman �ltering has been widely

used for localization purposes. The kinds that usually ap-

pear in mobile robot applications are the linear Kalman

�lter and the Extended Kalman �lter (EKF) forms of

the full state Kalman �lter. In this work we choose to

use the error-state form of both the linear Kalman �l-

ter and EKF. In the error-state (indirect) formulation,

the errors in orientation are among the estimated vari-

ables, and each measurement presented to the �lter is the

di�erence between the INS and the external source data

(i.e from absolute orientation sensors). In the following

section we derive the equations needed for such a formu-

lation. The primary reasons to pick this formulation are

1. No explicit modeling of the vehicle dynamics is needed,

2. The �lter runs at a relatively low frequency, and 3. In

case the �lter fails, integrated estimates of the INS data

continue to be available.

In the feedback form of the Indirect-feedback Kalman

�lter the updated error estimate is actually fed back to

the INS to correct its \new" starting point, i.e. the state

that the integration for the new time step will start from.

The rationale behind the Indirect Kalman �lter as well

as the feedback form are discussed in further detail in

[19, 20].

3.4 Gyro Modeling

A great di�culty in all attitude estimation approaches

that use gyros, is the low frequency noise component, also

referred to as bias or drift that violates the white noise

assumption required for standard Kalman �ltering. This

problem has attracted the interest of many researchers

since the early days of the space program [16]. Inclusion

of the gyro noise model in a Kalman �lter by suitably

augmenting the state vector has the potential to pro-

vide estimates of the sensor bias when the observability

requirement is satis�ed. Early implementations of gyro

noise models in Kalman �lters can be found in [17].

An estimate of the attitude would imply the derivation

of the dynamics of the robot, which we wish to avoid for

the reasons listed in the previous section. In order to

do so we relate the gyro output signal to the bias and

the angular velocity of the vehicle using the simple and

realistic model [8]. In this model the angular velocity

about a particular axis ! = _� is related to the gyro output
!m according to the equation:

_� = !m + b+ nr (3)

where b is the drift-rate bias and nr is the drift-rate



noise. nr is assumed to be a Gaussian white-noise process

with covariance Nr. The drift-rate bias b is not a static

quantity but is driven by a second Gaussian white-noise

process, the gyro drift-rate ramp noise nw. Thus _b = nw
with covariance Nw. The two noise processes are assumed

to be uncorrelated.

4 3-D Attitude Estimation

ROBOT
AT STOP

External

Command

to move

INTERNAL COMMAND 

TO STOP

NO

NO

YES

Sun Sensor

Uncertainty
>

2. Store gyros’ values

NO

YES

YES

IN MOTION

1. Absolute Orientation measurement
2. Backward KF attitude estimation

3. Smoother attitude estimation

4. Position Estimation

1. Forward KF attitude estimation

Threshold

Singularity

Figure 1: Algorithm Flow Chart: While the robot is in motion

the forward Kalman �lter uses gyro data to produce (in real-time) a

�rst approximation of the attitude estimate. When the covariance

of this estimate exceeds a preset threshold the robot is stopped.

An absolute orientation measurement is made using the sun sensor

and the three-axis accelerometer. A backward estimate is computed

(o�-line) and its results are combined (o�-line) with the estimate

from the forward �lter using a smoother. Finally, the position is

estimated (o�-line) using the (smoothed) attitude estimate for each

instant of the trajectory.

The proposed method in the 3D case is summarized in

Figure 1. It should be noted that only the forward �l-

ter estimate is available in real-time. The smoother runs

o�-line (during the times that the robot is halted). This

technique is not limited to robots used for Mars explo-

ration. It can be applied to any other autonomous vehi-

cle equipped an equivalent set of sensors. The mixing of

high frequency inertial sensors with low frequency abso-

lute (position or orientation) sensors is becoming common

in mobile robotics. Robots equipped with GPS or land-

mark tracking devices, usually carry additional sensors

that can be used for localization when the GPS signal

degrades or the landmarks are occluded. Our framework

could be used to combine the data from such sensor sets

as well.

4.1 Attitude kinematics

We use quaternions to parameterize the robot's attitude

for three practical reasons. First, the prediction equations

are treated linearly, secondly the representation is free of

singularities and �nally the attitude matrix is algebraic

in the quaternion components, thus eliminating the need

for transcendental functions. The reader is referred to [5]

for a review on quaternions.

The physical counterparts of quaternions are the rota-

tional axis n̂ and the rotational angle � that are used in

the Euler theorem regarding �nite rotations. By taking

the vector part of a quaternion and normalizing it, we

can �nd the rotational axis, and from the last parameter

we can obtain the angle of rotation [7]. Following the

notation in [13], a unit quaternion is de�ned as:

q = [q1 q2 q3 q4]
T

qT q = 1 (4)

where the �rst three elements of the quaternion can be

written in a compact form as:

~q = n̂sin(�=2) (5)

The attitude matrix is obtained from the quaternion

according to the relation:

A(q) = (jq4j
2
� j~qj2)I3�3 + 2~q~qT + 2q4

��
~q
��

(6)

where ��
~q
��

=

"
0 q3 �q2

�q3 0 q1
q2 �q1 0

#
(7)

is a 3�3 skew symmetric matrix generated by the 3�1

vector ~q. The matrix A(q) transforms representations of

vectors in the reference coordinate system to representa-

tions in the body �xed coordinate system. The rate of

change of the attitude matrix with time is given by:

d

dt
A(t) =

��
~!(t)

��
A(t) (8)

where the corresponding rate for the quaternion is:

d

dt
q(t) =

1

2

(~!(t))q(t) (9)



with


(~!) =

�
0 !3 �!2 !1

�!3 0 !1 !2
!2 �!1 0 !3

�!1 �!2 �!3 0

�
(10)

At this point we present an approximate body-

referenced representation of the error state vector and

covariance matrix. The error state includes the bias er-

ror and the quaternion error. The bias error is de�ned as

the di�erence between the true and estimated bias.

�~b = ~btrue �~bi (11)

The quaternion error is not the arithmetic di�erence

between the true and estimated but it is expressed as the

quaternion which must be composed with the estimated

quaternion in order to obtain the true quaternion.

�q = qtrue 
 q�1
i

or qtrue = �q 
 qi (12)

The advantage of this representation is that since the in-

cremental quaternion corresponds very closely to a small

rotation, the fourth component will be close to unity and

thus the attitude information of interest is contained in

the three vector component �~q where

�q ' [�~q 1]
T

(13)

Starting from equations:

d

dt
qtrue =

1

2

(
~_�true)qtrue (14)

and
d

dt
qi =

1

2

(
~_�i)qi (15)

where
~_�true is the true rate of change of the attitude and

~_�i is estimated from the measurements provided by the

gyros, it can be shown [19] that

d

dt
�~q =

��
~!m

��
�~q �

1

2
(�~b+ ~nr)

d

dt
�q4 = 0 (16)

where ~!m is the output of the gyros. Using the in�nites-

imal angle assumption in Equation 5, �~q can be written

as �~q = 1

2
�~�. Thus Equation 16 can be rewritten as:

d

dt
�~� =

��
~!m

��
�~� � (�~b+ ~nr) (17)

Di�erentiating Equation 11 and assuming
~_btrue = ~nw

and
~_bi = 0, the bias error dynamic equation is d

dt
�~b = ~nw

which when combined with Equation 17 yields the error

state equation:

d

dt

"
�~�

�~b

#
=

� ��
~!m

��
�I3�3

03�3 03�3

� "
�~�

�~b

#

+

�
�I3�3 03�3
03�3 I3�3

� �
~nr
~nw

�
(18)

In a more compact form Equation 18 is:

d

dt
�x = F�x+Gn (19)

4.2 Discrete system: Indirect forward
Kalman �lter equations

4.2.1 Propagation

At this point we de�ne qk=k (~bk=k) as the quaternion (bias)
estimate at time tk based on data up to and including

z(tk), qk=k�1 (~bk=k�1) the quaternion (bias) estimate at

time time tk�1 propagated to tk, right before the mea-

surement update at tk. The estimated angular velocity is

de�ned (before and after the update) as:

~!k=k�1 = ~!m(tk)�~bk=k�1 ~!k=k = ~!m(tk) �~bk=k (20)

Following [25], the full estimated quaternion is propa-
gated over the interval �tk = tk � tk�1 as follows:

qk=k�1 =

n
exp[ 1

2

(~!avg)�tk] + [
(~!k=k�1 )
(~!k�1=k�1 )

�
(~!k�1=k�1 )
(~!k=k�1 )]�t2
k
=48

o
qk�1=k�1

where the average angular velocity for this interval is

approximately

~!avg =
~!k=k�1+ ~!k�1=k�1

2
(21)

The bias estimate is constant over the propagation in-

terval ~bk=k�1 = ~bk�1=k�1. The propagation equation for

the error state covariance is

Pk=k�1 = �(k; k� 1)Pk�1=k�1�
T (k; k � 1) + Qk (22)

If the average angular velocity ~!avg is constant over the
interval �tk, with magnitude !avg then the discrete sys-

tem transition matrix �(k; k� 1) can be calculated from

Equation 18 as:

�(k; k � 1) =

�
exp(

��
~!avg

��
�tk) �	(�tk)

03�3 I3�3

�
(23)

where the matrix 	 is

	(�tk) = I3�3�tk +

��
~!avg

��
(1 � cos(!avg�tk)=!

2
avg

+

��
~!avg

��2
(!avg�tk � sin(!avg�tk))=!

3
avg (24)

4.2.2 Update

When the rover stops, an absolute orientation measure-

ment is available from the sun sensor and the accelerome-

ter. This is used to update the estimated error state and

the covariance [15]. The Kalman gain matrix is given by:

Kk = Pk=k�1H
T

k (HkPk=k�1H
T

k +Rk)
�1 (25)



The updated covariance and error state equations are:

Pk=k = Pk=k�1�KkHkPk=k�1 (26)

�xk=k = �xk=k�1+Kk�z(tk) (27)

or h
�~�k=k �~bk=k

iT
= Kk�z(tk) (28)

where �z(tk) is the measurement residual. The propa-

gated error �xk=k�1 is zero because we have implemented

the feedback formulation of the Indirect Kalman �lter.

Every time we have a measurement the update is included

in the full state and thus the next estimate of the error

state �xk=k�1 is assumed to be zero. This update is:

qk=k = �qk=k 
 qk=k�1 =
�
�~qk=k 1

�T

 qk=k�1 (29)

where

�~qk=k = (1=2)�~�k=k ~bk=k = ~bk=k�1 +�~bk=k (30)

4.2.3 Observation model

The attitude sensors considered here are the sun sensor

and the (three-axial) accelerometer both used when the

rover is at stop. The �rst one measures the unit vector

towards the sun and the second one provides the unit

vector in the vertical direction. These measurements de-

pend explicitly on the attitude but not on the gyroscopes'

biases. Let the observed vector in the sensor frame be

p̂S(tk) = TS BA(q(tk))p̂I + ~np (31)

where p̂S is the measured unit vector in the sensor frame,

p̂I is the reference vector in the inertial frame (pointing

towards the direction of the sun for example - we assume

that it does not change signi�cantly for small time inter-

vals), TS B is the transformation matrix from the body

frame to the sensor frame,A(q(tk)) is the true orientation
matrix of the robot at time tk, q(tk) is the true attitude
quaternion (qtrue) at time tk and ~np is the sensor noise.

If p̂S;k=k�1 is the measured unit vector estimate at time

tk and � is the matrix that projects the measurements on

a plane perpendicular to the sensor boresight, then the

residual �z(tk) can be written as:

�z(tk) = � (p̂S(tk)� p̂S;k=k�1)

= � (TS BA(q(tk))p̂I + ~np) � TS BA(qk�1=k)p̂I) (32)

The true orientation matrix is

A(q(tk)) = A(�~q(tk) 
 qk=k�1) = A(�~q(tk))A(qk=k�1)
(33)

Using Equation 6 and making small rotation angle ap-

proximations we can write

A(�~q(tk)) ' I3�3 + 2
��

�~q(tk)
��

(34)

Substituting back in Equation 33 for A(�~q(tk)) and us-

ing the resultant expression for A(q(tk)) in Equation 32

we get similar results to those in [22]:

�z(tk) = � (TS B

hh
�~�(tk)

ii
A(qk=k�1) + ~np) =�

ŝx � A(qk=k�1)p̂I
ŝy �A(qk=k�1)p̂I

�
�~�(tk) + � ~np =

hk=k�1�~�(tk) + � ~np (35)

where ŝx and ŝy are the unit vectors along the sensor

axes. From the previous equation it is obvious that the

observation model is non-linear and to calculate the sen-

sitivity (measurement) matrix we have to derive the par-

tial derivatives of �z with respect to the estimated error

states. The measurements are independent from the gyro

biases and thus:

Hk =
@(�z)

@(�~�)
=
�
hk=k�1 02�3

�
(36)

4.3 Backward �lter

In the ow chart shown in Figure 1 we see that the

robot stops every time the uncertainty grows over a preset

threshold. Then the backward �lter is engaged and the

last attitude estimate is propagated back in time. This

last estimate is very precise because it is heavily based

on the absolute orientation measurements acquired when

the robot stopped. While the backward �lter is close to

its starting point it is able to provide estimates of higher

con�dence than those of the forward �lter. In order to

derive the equations for the backward Indirect Kalman

�lter we start from the equations of the system for the

forward case:

_x = Fx+Gw and z = Hx+ v (37)

By de�ning � = T�t, where � is the backward time vari-

able and T = tk� tk�M is the time interval of smoothing,

the backward system equation can be derived from:

dx

d�
=

dx

dt

dt

d�
= � _x

dxb

d�
= �Fxb � Gw (38)

Making the appropriate substitutions we get the follow-
ing equation for the quaternion estimate propagation:

qb;k�1=k�1 =

n
exp[ 1

2

(~!avg)�tk] + [
(~!k=k�1 )
(~!k�1=k�1 )�


(~!k�1=k�1 )
(~!k=k�1)]�t2
k
=48

oT

qb;k=k�1

The bias propagation remains the same as before since

the direction of propagation does not a�ect an assumed

constant variable. The backward propagation equation

for the covariance is now:

Pb;k�1=k�1 = �b(k�1; k)Pb;k=k�1�
T

b (k�1; k)+Qb;k (39)
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Figure 2: This is the usual outcome due to the bias estimation.

The forward �lter estimate drifts to the right because it has un-

derestimated the gyro bias. The backward �lter overestimates and

thus drifts to the left (in the opposite direction). The smoothed es-

timate outperforms both �lters minimizing the average estimation

error.

No new absolute measurements are collected during the

backward propagation of the �lter and thus, the update

equations and the observation model for the backward

�lter are not considered.

4.4 Smoother

The smoother constructs the best estimate of the state

of the system over a time period using all the measure-

ments in that time interval [18]. In our case, the time

for which the robot stops to get an absolute orientation

measurement allows for post-processing and therefore ap-

plication of the smoother. In order to calculate the total

(smoothed) estimate we use the following equation1:

P�1
total

x̂total = P�1
f

x̂f + P�1
b

x̂b (40)

Each covariance matrix Pf , Pb and Ptotal represents the
uncertainty of the corresponding estimate. The higher

the uncertainty, the larger the covariance matrix. Equa-

tion 40 weighs each of the available estimates (from the

forward and the backward �lter) according to their cer-

tainty. The result is the optimal estimate possible, if all

the measurements of the time interval of smoothing were

available at once. The signi�cant improvement in the

quality of the 3D estimate is shown in Figure 4. Di�erent

estimated quantities calculated in a representative trial

are depicted in Figures 2 and 3.

1Applying this in 3D is somewhat involved because of the par-

ticular form of the error quaternion used. The interested reader is

referred to [19] for the technical details
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Figure 3: For the second gyro, we show the true bias value,

the forward �lter's estimate, the backward �lter's estimate and the

smoothed estimate of the bias. The smoothed (total) estimate stays

close to the backward �lter estimate for the second half of each

smoothing interval while for the �rst part it depends on both the

forward �lter's estimate and the backward �lter's estimate. This is

due to the fact that the initial bias value for the backward �lter is

more trustworthy for this time interval than the initial value of the

forward �lter. The asymmetry is due to the fact that the backward

�lter works with an \initial" estimate which is actually computed

after the motion.

5 From Attitude Estimates to Position

Estimates

The accuracy of the position estimate depends heavily

on the accuracy of the attitude estimate. Though the po-

sition can be calculated in real-time using the output of

the forward Kalman �lter we choose not to do that. In-

stead in our algorithm the position estimation takes place

o�-line as described in Figure 1. After the vehicle stops to

collect an absolute orientation measurement the o�-line

smoothing of the attitude estimation is performed. The

resulting estimate is accurate and is used to compute the

current position. As we mentioned before the attitude

estimate is an input to Equations 1 and 2. If the inte-

gration step is small, we can simplify this calculation as

follows. First the increase in position is calculated due to

the sensed acceleration and the current velocity:

L�p(tk) =
Lv(tk) �T + La(tk) �T 2=2 (41)

this increment is then transformed to global coordinates

using G�p(tk) =
G

L
A(q(tk))

L�p(tk), before it can be

used to compute the next position using

Gp(tk+1) =
Gp(tk) +

G�p(tk) (42)

The velocity increment during every measurement cycle

is L �v(tk) = La(tk) �T . In global coordinates, we
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Figure 4: The covariance related to q2 from the forward �lter,

backward �lter and smoother is shown. At all times the total co-

variance is lower than either of the corresponding ones calculated

from the two �lters. Its value remains bounded and varies slightly

during the smoothing interval.

have G �v(tk) =
G

L
A(q(tk))

L �v(tk). The new velocity

is
G v(tk+1) =

G v(tk) +
G �v(tk+1) (43)

This result has to be transformed to local coordinates

before it is fed back for the next position update:

L v(tk+1) =
L

GA(q(tk+1))
G v(tk+1) (44)

6 Conclusion

In this paper we decomposed the localization algorithm into

attitude estimation and, subsequently, position estimation. A

novel approach that incorporates a smoother was presented.

An Indirect (error-state) Kalman �lter that incorporates iner-

tial navigation and absolute measurements was developed for

this purpose. The dynamic model was replaced by gyro model-

ing which relies on the integration of the kinematic equations.

The error state equations for the three dimensional case were

derived and used to formulate the �lter's time-variant sys-

tem model and non-linear observation model. Quaternions

were selected for the three dimensional attitude representa-

tion. Finally, the improvement due to the proposed method

was demonstrated in simulation. Uniformly smaller values of

the covariance of the estimate were sustained throughout each

of the trials. It should be noted that due to the lack of vehicle

speci�c dynamic modeling the proposed approach is general

and may be used on any vehicle chassis with an equivalent set

of sensors. Future directions of research include applications

(extensions) of this method to cases where the INS sensors are

fused with other absolute sensors that measure position (e.g.

vision cues, star sensors, beacons etc.)
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