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Abstract

Indoor spatial navigation is a challenge for individuals with
limited visual input (Low Vision) and can be a challenge for
individuals with normal visual input in unfamiliar, complex
environments. Although outdoor navigation can be achieved
using Global Positioning Systems (GPS), these signals are
not available for indoor navigation. We have developed an
indoor navigation aid that uses a Bayesian approach (Par-
tially Observable Markov Decision Process; POMDP) to lo-
calize and guide a user within an unfamiliar building. We de-
scribe the fundamental concept here, in addition to empirical
evaluation of the system within virtual environments of vary-
ing sizes. Our findings show that the system improves per-
formance when visual information is degraded and also im-
proves performance under normal conditions in large, com-
plex environments.

Introduction
Approximately eight-million Americans report having some
form of visual disorder defined by difficulty reading print
material in a typical newspaper with corrective lenses (Mc-
Neil 2001). These visual disorders can range from being
completely blind to having some sort of residual vision.
Common causes of these vision losses, or low vision, in-
clude, but are not limited to, macular degeneration, glau-
coma, and diabetic retinopathy. Each of these forms of low
vision affect an individual’s vision in different ways. Al-
though the specifics of the vision loss may vary significantly
from one visual disorder to another (e.g., loss of contrast,
acuity or loss of portions of the visual field) and the resid-
ual vision for a specific individual with the same type of
visual disorder may vary significantly, it is commonly rec-
ognized that significant vision loss typically has a detrimen-
tal effect on an individual’s ability to navigate independently
(Marston & Golledge 2003).

The Effects of Vision Loss on Independent Mobility
Marston et al. (Marston & Golledge 2003) surveyed 30 in-
dividuals with low vision to get an idea of the types of ac-
tivities that they did each week and whether there were ac-
tivities that they wanted to participate in but did not engage
in because of navigation difficulties associated with their vi-
sual disorder. They found that individual with low vision did

not participate in 31% of the activities that they would have
liked to engage in due to their visual disorder.

The current paper presents a description and evaluation
of a low-vision navigation aid that is currently being devel-
oped. We expand on recent research in our lab (Stankiewicz
et al. In Press) showing the benefit of the low-vision naviga-
tion aid in virtual and real environments. The current stud-
ies investigate the benefit of the system in environments that
vary in size (i.e., the number of hallways) and the number of
dynamic obstacles (i.e., pedestrians).

Description of the NavAid System

NavAid uses a Bayesian algorithm that, given specific possi-
ble actions, costs for making those actions and a destination,
can choose the optimal action despite uncertainty about the
true state (position and orientation) of the user within the en-
vironment. This form of Bayesian analysis is referred to as
Partially Observable Markov Decision Processes (POMDP)
(Kaelbling, Cassandra, & Kurien 1996; Kaelbling, Littman,
& Cassandra 1998; Cassandra, Kaelbling, & Littman 1994;
Stankiewicz et al. 2006; Sondik 1971). Previously, the
POMDP algorithm has been used to guide robots in large-
scale environments (Kaelbling, Cassandra, & Kurien 1996;
Kaelbling, Littman, & Cassandra 1998; Cassandra, Kael-
bling, & Littman 1994) and for measuring human efficiency
when navigating with uncertainty (Stankiewicz et al. 2006).
The current system is not a robot, but uses some of the un-
derlying mathematics to guide and instruct a low-vision user
to a specific location within a large-scale space.

Components of the NavAid System

NavAid is comprised of four primary components: an envi-
ronment model, a range finder, a POMDP algorithm, and
a computer. The environment model makes explicit the
set of states in the environment (positions and orientations),
the expected observations for each state within the environ-
ment and the resulting states for each action from each state.
The set of states in the current system are a series of loca-
tions within the environment crossed with four orientations
at each location (see Figure 1). The expected observations
from each state is simply a distance measurement from the
user’s current pose to the end of the hall (see Figure 1).



Figure 1: A simple example of how the low-vision naviga-
tion concept works. The upper panel illustrates the true state
of the world, and the lower panel illustrates where the algo-
rithm believes that the user is located. There are 36 states
that the observer could be in (9 positions [A-I] x 4 Orienta-
tions [N,S,E,W]. The circled triangles in the lower two pan-
els indicate the goal state. The filled triangles indicate the
model’s current belief about the user’s state. In the upper-
left panel the user makes his first observation, given that ob-
servation the model generates a belief vector specifying the
likelihood that the user is in each of the 36 different states
(lower-left panel). Given the belief, the model computes that
rotate left is the optimal action to do at this time. The user
then carries out this action and then takes a second mea-
surement (upper-right panel). Given this measurement in
conjunction with the previous measurement and action the
model generates a new belief vector (lower-right panel).

Brief Description of the POMDP Algorithm
NavAid is comprised of four primary components: an envi-
ronment model, a range finder, a POMDP algorithm, and
a computer. The environment model makes explicit the
set of states in the environment (positions and orientations),
the expected observations for each state within the environ-
ment and the resulting states for each action from each state.
The set of states in the current system are a series of loca-
tions within the environment crossed with four orientations
at each location (see Figure 1). The expected observations
from each state is simply a distance measurement from the
user’s current pose to the end of the hall (see Figure 1).

In addition to the environment model, there is also a range
finder that is held by the user to take measurements from the
user’s current position and orientation within the environ-
ment to the end of the hall (see Figure 1). The distance mea-
surements are the observations that are given to the POMDP
algorithm to inform the system about the user’s current state.
Given a measurement, the algorithm references the environ-
ment model and its current belief about where it is in the en-
vironment. Thus, given an observation, the model can spec-

ify a likelihood that the observer is in any one of the states
(p(state|observation, belief)); see Figure 1 upper-left and
lower-left illustration). Given the likelihood of being in each
state, or a belief vector (b), the model computes the action
that will get the user to the goal state with the largest reward
or minimal cost. The NavAid system instructs the user about
the optimal action to take. After the user completes the in-
structed action, the user takes another observation. Given
the new observation the model updates its belief about its
state within the environment considering the initial obser-
vation, the action and the new observation (i.e., p(s|a, b, o)).
The NavAid system continues through this cycle of observa-
tion, belief updating, and action selection until the optimal
action is to declare “finished”. The “finished” action is given
when the model believes that the subject is at the goal state
with enough confidence (i.e., likelihood) that outweighs the
cost associated for declaring at the wrong state.

To further illustrate the basic concept proposed here, we
will reference Figure 1. The upper-left and upper-right fig-
ures in Figure 1 illustrate the true-state of the user. In the
lower-left and lower-right figures are the corresponding state
spaces for the environment. That is, there are nine differ-
ent positions that the environment model considers (A-I) and
four different orientations (N,S,E,W)1. This gives us 36 dif-
ferent states that the model will consider. In the upper-left
panel, the user is making his initial observation. The vector
from the user to the wall represents the range finder mea-
surement from the user to the wall. Given this initial mea-
surement, the model computes the likelihood that the user is
in each state. We represent the non-zero likelihoods as solid
triangles and the zero likelihoods as open triangles. With the
initial observation their are six different states that the user
could be in: B-W, B-S, C-N, E-E, G-N, and H-S. The goal
state for the system is H-W.

To simplify the illustration, we assume that there is no
action or observation noise2. Because of this, the likelihood
for each non-zero states is 0.1666 (1.0/6.0). Given this belief
vector, the model computes the optimal action to reach the
goal state with the minimum cost or maximum reward. In
this case, the optimal action is “Rotate-Left”. This instruc-
tion is given to the user and the user then carries out the in-
struction. The resulting state is illustrated in the upper-right
panel of Figure 1. The user then takes a second measure-
ment from his new state. Following the second observation,
the model updates its belief vector taking into account the
previous belief vector (b), the instructed action (a) (‘Rotate-
Left’) and the new observation (o) using Bayes’ Theorem
(p(s|a, b, o) where s is a specific state) . The updated belief
vector is illustrated in the lower-right panel of Figure 1. At
this point, the model has no uncertainty about where the user
is located. There is only one state in which this sequence of
actions and observations could be made which is state B-S.
The model continues with this cycle of observation, action

1We use N,S,E,W as arbitrary directional units. We could have
used up, down, left and right also, or any other notation so long as
the orientations are consistent.

2When we actually model the environment we model it assum-
ing that the actions are not deterministic.



selection, belief updating until the model was confident that
the user had reached the goal state.

The previous illustration provides an intuitive understand-
ing of how the algorithm and system works. However, it
does not provide a formal description of the system. If
the paper is accepted for presentation, we will request for
a full paper (8 pages) that will provide more of the details.
Many of the details can be found in (Cassandra, Kaelbling,
& Littman 1994; Kaelbling, Littman, & Cassandra 1998;
Kaelbling, Cassandra, & Kurien 1996; Thrun et al. 1998;
Burgard et al. 1998; Sondik 1971; Stankiewicz et al. In
Press; 2006).

Empirical Evaluation
We evaluated the effectiveness of the system in virtual en-
vironments of varying sizes. Because we were conducted
the current evaluations in virtual, rather than real environ-
ments, we could easily manipulate the size and complexity
of the virtual indoor environments. Eight different virtual
indoor environments were randomly generated by “placing”
virtual hallway segments on a cartesian grid. This meant that
all of the hallways intersected one another at 90̊ angles and
the environments were unfamiliar to the participants. The
environments were composed of 5, 10, 20, and 40 hallway
segments (two environments of each size). The goal of this
study was to determine whether there was a benefit for using
the NavAid system in environments that were small (e.g., 5
hallways) and large environments (40 hallway segments).

Methods
Undergraduates from the University of Texas at Austin par-
ticipated in the study and were paid $10.00/hour. In each
study, participants started in an unfamiliar environment from
an unspecified location within the environment and was in-
structed to reach a particular goal state within the environ-
ment. The goal state was identified by a particular room
number within the virtual environment. Within the virtual
environment there were signs with numbers placed through-
out the environment. The participant’s task was to find the
goal state as quickly and as efficiently as possible. Partici-
pants moved through the environment using a joystick.

In the NavAid condition, participants used the NavAid
system. At the beginning of a trial the NavAid system in-
structed the user to “Take a measurement”. This was com-
pleted by making a “trigger” response on the joystick. The
computer measured the distance from the user to the farthest
object away from the user in the direction that the user was
facing. The algorithm used this distance estimation to up-
date its belief (likelihood estimate for each state in the en-
vironment) about where it could be within the environment.
Using this belief vector, the algorithm computed the optimal
action that got the user to their destination with the min-
imum cost. The computer would then verbally instruct the
user about this action (e.g., “Turn Around”). The user would
generate the action and then take another measurement. The
algorithm then updated its current belief, given the previous
action and the newly acquired observation. This would con-
tinue until the algorithm reached what it believed to be the

Figure 2: Average distance travelled as a function of the size
of the environment. The three curves represent the average
distance travelled in the three conditions (Normal Vision,
Degraded Vision:NavAid, and Degraded Vision (fog):No
NavAid)

goal state. At this time the computer would declare “Fin-
ished”.

Participants were studied in three different conditions:
Normal Vision:No NavAid, Degraded Vision:NavAid and
Degraded Vision: No NavAid. In the Degraded Vision con-
ditions, fog was added to the environment to reduce visibil-
ity. Previous research has shown that degrading vision in
this way leads to a reduction in performance (Stankiewicz
et al. In Press). The Normal Vision condition provides us
with a baseline by which to compare performance in the two
degraded vision conditions. One interesting comparison is
between the Degraded Vision:NavAid and the Normal Vi-
sion: No NavAid conditions. This provides will inform us
with how well the NavAid system is doing relative to some-
one with normal vision, and also provides some insight into
whether the NavAid system might help individuals who have
normal vision.

Results
Our main dependent variable in both studies was the average
distance travelled for the participants. Figure 2 shows the av-
erage distance travelled for the three conditions as a function
of layout size. The primary finding here is that for small en-
vironments, five hallway segments or less, there seems to be
little to no benefit for the NavAid system. However, as the
environment increases in complexity beyond five hallway
segments there is a clear advantage for using the NavAid
system when visual information is degraded. Participants
are navigating with degraded vision with the NavAid system
just as well as when they have normal viewing conditions
when the environment is ten hallway segments or smaller.
However, for environments that have 20 hallways or more,



the participants with degraded vision with the NavAid sys-
tem are performing better than when they are navigating un-
der normal viewing conditions.

References
Burgard, W.; Cremers, A.; Fox, D.; Hahnel, D.; Lake-
meyer, G.; Schulz, D.; Steiner, W.; and Thrun, S. 1998.
The interactive museum tour-guide robot. Proceedings of
the AAAI Fifteenth National Conference on Artificial Intel-
ligence.
Cassandra, A. R.; Kaelbling, L. P.; and Littman, M. L.
1994. Acting optimally in partially observable stochastic
domains. In Proceedings of the Twelfth National Confer-
ence on Artificial Intelligence (AAAI-94), volume 2, 1023–
1028. Seattle, Washington, USA: AAAI Press/MIT Press.
Kaelbling, L. P.; Cassandra, A. R.; and Kurien, J. A. 1996.
Acting under uncertainty: Discrete bayesian models for
mobile-robot navigation. In Proceedings of IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R.
1998. Planning and acting in partially observable stochas-
tic domains. Artificial Intelligence 101:99–134.
Marston, J. R., and Golledge, R. G. 2003. The hidden
demand for participation in activities and travel by persons
who are visually impaired. Journal of Visual Impairment
& Blindness 97(8):475–488.
McNeil, J. 2001. Americans with disabilities: 1997. Cur-
rent Population Reports P70-61, U.S. Government Printing
Office, Washington, DC.
Sondik, E. 1971. The Optimal Control of Partially Observ-
able Markov Decision Processes. Ph.d. thesis, Stanford
University.
Stankiewicz, B. J.; Legge, G. E.; Mansfield, J. S.; and
Schlicht, E. J. 2006. Lost in virtual space: Studies in
human and ideal spatial navigation. Journal of Experi-
mental Psychology: Human Perception and Performance
32(3):688–704.
Stankiewicz, B. J.; Cassandra, A. R.; McCabe, M.; and
Weathers, W. In Press. Evaluation of a bayesian low-vision
navigation aid. Institute of Electrical and Electronics En-
gineers Transactions on Systems, Man, and Cybernetic.
Thrun, S.; Gutmann, S.; Fox, D.; Burgard, W.; and
Kuipers, B. J. 1998. Integrating topological and met-
ric maps for mobile robot navigation: A statistical ap-
proach. In Proc. 15th National Conf. on Artificial Intel-
ligence (AAAI-98), 989–995. AAAI/MIT Press.


