
Efficient Model Learning for Dialog Management

Finale Doshi and Nicholas Roy
MIT Computer Science and Artificial Intelligence Laboratory

32 Vassar Street
Cambridge MA, 02139 USA

Introduction
Spoken dialog managers can allow for natural human-robot
interaction, but noisy voice recognition and linguistic am-
biguities can make it difficult to decipher the user’s intent.
Planning algorithms such as Partially Observable Markov
Decision Processes (POMDPs) have succeeded in dialog
management applications because they are robust to uncer-
tainties in the dialog. Like all dialog planning systems, how-
ever, POMDPs require an accurate model of the user’s com-
munication style and preferences. POMDPs are generally
specified using large probabilistic models with many param-
eters. These parameters are difficult to specify from domain
knowledge, and gathering enough data to estimate the pa-
rameters accurately a priori is expensive.

We use a Bayesian approach to learning the user model.
First, we show how to compute the optimal dialog policy
with uncertain parameters (in the absence of learning). Sec-
ond, we present a heuristic that allows the dialog manager
to intelligently replan its policy given data from recent in-
teractions. Our approach performs well both in simulation
and on a dialog manager of a robotic wheelchair (Figure 1).
Finally, we present an alternative to our first approach which
has potential for learning user preferences more robustly.

Figure 1: Our dialog manager allows more natural human
communication with a robotic wheelchair.

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Related Work
Most dialog managers assume that an accurate user model
is available ((Williams, Poupart, & Young 2005), (Pineau,
Roy, & Thrun 2001), (Williams & Young 2005)). In the
field of POMDP learning, the Medusa algorithm (Jaulmes,
Pineau, & Precup 2005) places priors over the POMDP pa-
rameters, samples and solves many POMDPs from these
prior distributions, and uses this sample to vote for a good
policy. While principled, Medusa is computationally expen-
sive. Other work uses minimax approaches to find robust
MDP policies when transition matrices are uncertain (Nilim
& Ghaoui 2004). We follow Medusa’s Bayesian approach;
however, we begin with only one POMDP dialog manager
instead of several samples.

Maximizing Expected Performance
Acting with Uncertain User Models
A POMDP-tuple contains the sets S (states), A (actions),
and O (observations). In our case, the states represent the
user’s (hidden) intent, while the observations represent the
actual utterances the dialog manager receives from the voice
recognition software. The functions R(s, a) (reward for tak-
ing action a in state s), T (s′|s, a) (state transition prob-
ability P (s′|s, a)), and Ω(o|s, a) (observation probability
P (o|s, a)) together model the user’s communication style
and preferences. Since we are uncertain about the user
model, we place priors over the parameters in R,T , and Ω.
We assume the true parameter values do not change. Fig-
ure 2 shows a simple dialog POMDP.

start

Go to
Kitchen

Go to
Bathroom

Go to
Bedroom

...

done

reset

Figure 2: Our dialog POMDP. Solid lines represent more
likely transitions; we assume that user is unlikely to change
their intent before their original request is fulfilled (dashed
lines). The system resets once we enter the ‘done’ state.

An optimal POMDP policy maps beliefs b (distributions
over states) to actions to maximize the total expected reward.
For example, if the user is likely in state s1, but may be in
s2, the optimal action may be to query the user if they are
truly in s1. The optimal value function V (b) represents the
total reward we expect to gather if the dialog manager starts
with an initial belief b and acts optimally. V (b) can be found
via the following (standard) recursion:

Vn(b) = max
a∈A

Qn(b, a), (1)

Q(b, a) = max
i

~qa · b, (2)

qa(s) = R(s, a) + γ
∑

o∈O

∑

s′∈S

T (s′|s, a)Ω(o|s′, a)αn−1,i(s)

(3)
where Ω(o|b, a) is the probability of seeing o after perform-
ing a in belief b.1 Each iteration of this recursion is called a
backup. When the value function converges to (within ε of)
a unique set of values, we have backed up to ε-convergence.

The Q(b, a) values represent the total expected reward if
we start from b, do a, and then act optimally. Equation 1
chooses the action that maximizes the expected reward to
derive the optimal dialog policy. Equations 2 and 3 take
expectations over the belief (uncertainty in user’s intent) and
the user model (ambiguities in the user’s communication). If
the user model contains uncertain parameters, then we must
add an additional expectation in Equation 3:

qa(s) = EM [R(s, a) +

γ
∑

o∈O

∑

s′∈S

T (s′|s, a)Ω(o|s′, a)αn−1,i(s)]

= EM [R(s, a)] +

γ
∑

o∈O

∑

s′∈S

EM [T (s′|s, a)]EM [Ω(o|s′, a)]αn−1,i(s)]

The second line follows from the linearity of expectations
and since the parameter distributions T and Ω are indepen-
dent. Thus, we show solving the POMDP with the expected
parameter values will maximize the expected reward.

Efficient Policy Updates after Learning
After each user interaction, we update a Gaussian reward
prior and Dirichlet observation and transition priors. Updat-
ing Dirichlet and Gaussian priors is straight-forward, but we
need to know the user’s (hidden) state to update the correct
R(s, a), T (s′|s, a), and Ω(o|s, a) distributions. The simple
structure of the dialog model allows us to infer the user’s
state history from the action that ended the exchange.

Recomputing a new policy after each dialog would re-
quire large amounts of computation. Instead, we update the
current dialog policy using the new expected values of the
parameters. How many backups should we perform? Back-
ing up to convergence is computationally expensive and may

1This representation uses the fact that the value function is
piecewise convex and linear. We use a point-based value itera-
tion method to approximate the solution (Pineau, Gordon, & Thrun
2003).

be a wasted effort if the parameters are fairly uncertain. We
tested three heuristics: backing up to convergence, backing
up once, and backing up proportionally to the variance re-
duction in the parameters. The intuition behind the final
heuristic is that we wish to expend the more computational
effort when parameters become more certain.

Simulation Results
We first tested our approach on a simulated dialog manager.
The user’s states corresponded to five goal locations; actions
included clarification queries (low cost) and motions (high
cost if incorrect). Our priors, used to compute the initial di-
alog management policy, guessed observations had half the
true error rate and that the user was more forgiving of mis-
takes. Averaged over 100 simulated trials, all heuristics im-
proved performance similarly, but backing up proportionally
to variance reduction did so with less computation.

Wheelchair Results
We also tested our algorithm on a real wheelchair dialog
manager. More complex than the simulation model, the
wheelchair’s vocabulary included not only keywords asso-
ciated with particular locations, but also several words—
such as elevator—not initially mapped to any goal location.
Our adaptive dialog manager learned associations for the un-
mapped keywords and the user’s preferences (see example in
Table 1). As seen in Figure 3, the learning dialog manager
generally out-performed the non-learner.

0 5 10 15 20 25 30 35 40
−500

−400

−300

−200

−100

0

100

Iteration

T
ot

al
 R

ew
ar

d

Total reward received over one user trial

Learning Dialog Manager
Non−learner

Figure 3: The learner (solid) generally outperforms the non-
learner (dashed), rarely making serious mistakes.

Table 1: Part of a wheelchair-user dialog. The dialog spec-
ification failed to specify how to handle the word ‘elevator.’
The learner realizes that while there are multiple elevators,
the user most often uses it in the context of the Gates Tower.

Without learning
USER: Take me to the elevator.
The system does not know what ‘elevator’ means.
ROBOT: Where did you want to go?
USER: The Gates elevator please.
ROBOT: Do you want to go to the Gates Tower?
USER: Yes.
ROBOT: Going to the Gates Tower.
After learning:
USER: Take me to the elevator.
ROBOT: Do you want to go to the Gates Tower?
USER: Yes.
ROBOT: Going to the Gates Tower.

Improving Dialog Manager Robustness
Our dialog policy maximized the expected reward over the
uncertain user model, but the outliers in our user tests are
unacceptable in the wheelchair domain. For more robust
performance, we must consider the spread of the parame-
ters and their mean. By including the parameters—and their
uncertainty—as an explicit part of the dialog model, the di-
alog manager can take actions that to reduce parameter un-
certainty. Such a dialog manager will also be robust to poor
initial parameter estimates.

We incorporate some of the unknown parameters into the
POMDP model to create a more robust dialog manager (Fig-
ure 4). Our new state space consists of a vector {su, ~sr},
where su is the user’s state (where he wishes to go) and ~sr

is vector of the user’s preferences: rewards associated with
state-action pairs such as making a general query or mak-
ing an incorrect confirmation. For the present, we consider
learning the only user’s preferences (not observation param-
eters) and assume a finite set of possible reward values. We
extend our observation space to be {od, or}, where od is the
speech to the dialog manager and or is a reward entered by
the user. Our new belief b(su, ~r) represents the probability
that the user is in state su and the rewards are given by ~sr.

Including the reward parameters in the POMDP increases
the size of the state space and thus increases the computa-
tion required. As seen in Figure 4, however, independencies
between the user’s current goal (su) and his overall reward
preferences (~sr) allow us to factor transition and observation
probabilities in the POMDP. For example, consider the prob-
ability of observing a particular {od, or} in a state {su, ~sr}.
The observed speech input does not depend on the user’s
reward model, so the observation probability factors as:

P (od, or|su, ~sr) = P (od|su) · P (or|su, ~sr)

Similar factorizations for other transition and observation
probabilities make solving this complex POMDP tractable.

Our new POMDP dialog manager is aware of its uncer-
tainty in the model, but the only way for it to discover the
consequences of a poor decision is to make a bad choice and
experience its effects. To further increase robustness, we add
a set of meta-queries: “I am x% certain that you wish to go
to the parking lot. In the future, should I confirm this with

sr

o d
o r

a us

sr

o d
o r

a us

time t time t+1
Figure 4: Influence diagram for our factored POMDP. The
user state su depends on the current action a and the pre-
vious state, while the user’s preferences sr never change.
Of the two observations, the observed reward or depends on
both the user’s state and his preferences and the observed
dialog od depends only on the user’s state.

you or proceed directly to the goal location?” If the user re-
sponds that the dialog manager should confirm the action in
the future, we can infer that the user places a high penalty
on incorrect decisions without experiencing its effects. How-
ever, if the user tells the wheelchair to proceed without con-
firmation, we have learned that the user is willing to risk an
incorrect decision to avoid being asked multiple questions.

The user’s response to the meta-query allows us to prune
inconsistent preference states ~sr from the belief space. To
determine which ~sr are feasible, we first find the optimal
POMDP policy without including the meta-queries. Next,
for all ~sr and b(su) with x% probability mass in one state,
we check if predicted action matches the user’s response.
Although we have to solve the dialog manager POMDP in
two stages—without and with meta-queries—all computa-
tions may be performed before user interactions begin.

Conclusions
We presented two POMDP-based approaches to dialog man-
agement on a robotic wheelchair. Our first approach based
its decisions only the expected values of the uncertain pa-
rameters. To improve the quality of this approach, we note
that re planning only corrects for loss in performance due to
incomplete convergence; by estimating the variance due to
the uncertainty in both the dialog and the user model we can
judge the effectiveness of additional planning.

While efficient, our first approach was not necessarily ro-
bust. Our second approach, which folds parameters into
the POMDP dialog manager, promises to be robust but re-
quires much more computation. However, we show that the
appropriate factoring schemes can keep the computational
load feasible. Since we are planning over the parameter
space, very little computation needs to be performed online.
The heuristics in this paper show that POMDP learning is
promising for dialog management, and in the future we hope
to create an algorithm that is efficient and learns robustly.

References
Jaulmes, R.; Pineau, J.; and Precup, D. 2005. Learning in
non-stationary partially observable markov decision pro-
cesses. Workshop on Non-Stationarity in Reinforcement
Learning at the ECML.
Nilim, A., and Ghaoui, L. 2004. Robustness in markov
decision problems with uncertain transition matrices.
Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based
value iteration: An anytime algorithm for pomdps.
Pineau, J.; Roy, N.; and Thrun, S. 2001. A hierarchi-
cal approach to pomdp planning and execution. In Work-
shop on Hierarchy and Memory in Reinforcement Learning
(ICML).
Williams, J., and Young, S. 2005. Scaling up pomdps for
dialogue management: The ”summary pomdp” method. In
Proceedings of the IEEE ASRU Workshop.
Williams, J. D.; Poupart, P.; and Young, S. 2005. Par-
tially observable markov decision processes with continu-
ous observations for dialogue management. In Proceedings
of SIGdial Workshop on Discourse and Dialogue 2005.

