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Abstract
Mobile robots, in general, and service robots in human en-
vironments, in particular, need to have versatile abilities to
perceive and interact with their environment. Biologically in-
spired sound source localization is an interesting ability for
such a robot. When combined with other sensory input both
the sound localization and the general interaction abilities can
be improved. In particular, spatial filtering can be used to im-
prove the signal-to-noise ratio of speech signals emanating
from a given direction in order to enhance speech recognition
abilities. In this paper we investigate and discuss the com-
bination of sound source localization and laser-based object
recognition on a mobile robot.

Introduction
Speech recognition is a crucial ability for communication
with mobile service robots in a human environment. Al-
though modern speech recognition systems can achieve very
high recognition rates, they still have one major drawback.
In order for speech recognition to perform reliably, the in-
put signals need to have a very high signal-to-noise ratio
(SNR). This is usually achieved by placing the microphone
very close to the speaker’s mouth, for example, with the help
of a headset. However, this is a requirement which in general
cannot be met on mobile robots, where the microphone can
be at a considerable distance from the sound source, thus
corrupting the speech signal with environmental noise. In
order to improve SNR, it is very useful to know the direc-
tion to a sound source. With the help of this information, the
sound source can be approached and/or spatial filtering can
be used to enhance a signal from a specific direction.

In order to obtain reliable directional information, at least
two microphones have to be used. Although the task would
be easier with more microphones, we deliberately chose to
restrict ourselves to two, because the processing of only two
signals is computationally less expensive and standard, off-
the-shelf hardware can be used. Furthermore, two micro-
phones are easier to fit on a mobile robotic platform than a
larger array.

We investigated the combination of our existing sound
localization system (Calmes, Lakemeyer, & Wagner 2003)
with the robot’s knowledge about its environment, espe-
cially the knowledge about dynamic objects in this paper.
By combining several sensor modalities, sound sources can

be matched to objects, thus enhancing the accuracy and reli-
ability of sound localization.

The paper is organized as follows. First, we describe our
approach to sound localization. Then we present how our
laser-based object recognition works. Finally, we report on
experiments we conducted to show how combining these
two informations can be helpful and we discuss results ob-
tained so far.

Sound localization
We use a biologically inspired approach to sound localiza-
tion. The major cue for determining the horizontal angle
(azimuth) to a sound source in humans as well as in animals
is the so-called interaural time difference (ITD). The ITD is
caused by the different running times a sound wave needs to
reach both ears.

L.A. Jeffress proposed a model in 1948 which tried to ex-
plain how ITDs could be evaluated on a neuronal level (Jef-
fress 1948). This model has two major features: axonal de-
lay lines and neuronal coincidence detectors. Each coinci-
dence detector neuron receives inputs from delay lines from
the left and the right ear and fires maximally if excited from
both sides simultaneously. As action potentials are transmit-
ted by axons at finite speeds, different delay values are im-
plemented by varying length of the axonal delay lines. Each
coincidence detector is tuned to a best delay by the combi-
nation of the delay values from both input sides.

By this arrangement, the axonal delay lines compensate
the ITD present in the ear input signals and only neurons
with a best delay corresponding to the external delay will
fire. Thus the timing information is transformed into a place
code in a neuronal structure.

Strong physiological evidence for the Jeffress model was
found in birds (Carr & Konishi 1988; 1990; Parks & Rubel
1975; Sullivan & Konishi 1986). In the case of mammals, it
is currently debated whether these animals have delay lines
at all (McAlpine & Grothe 2003).

The simplest computational implementation of the Jef-
fress model consists of a cross-correlation of the input sig-
nals. Our algorithm is a modification of the one proposed
in (Liu et al. 2000). All processing takes place in the fre-
quency domain after Fourier transformation. Delay line val-
ues are computed so that the azimuthal space is partitioned
into sectors of equal angular width, with each coincidence



detector element corresponding to a specific azimuth. For
each frequency bin, delaying is implemented by a phase ad-
justment in the left and right channels at each coincidence
detector corresponding to the precomputed delay values.
Coincidence detection is performed by computing the mag-
nitude of the difference of the delayed left and right signals
for each frequency and each coincidence detector element.
Plotting these magnitudes against coincidence location and
frequency results in a three-dimensional coincidence map.
Low values in the map correspond to high coincidence for
a given frequency and coincidence detector. The final local-
ization function is computed by summing up the 3D coinci-
dence map over frequency. Minima in the resulting function
specify the location of the detectors at which highest coin-
cidence was achieved. As each detector corresponds to a
specific azimuth, the angle to the sound source can easily be
determined from positions of the minima.

From the localization function, a quality criterion is de-
rived (roughly corresponding to the cross-correlation of the
input signals) by normalizing to the range of the absolute
maximum and minimum. The coincidence location corre-
sponding to the normalized minimum with the value 0 will
be assigned a so-called peak height of 100%, other min-
ima will be assigned a correspondingly lower value. Fur-
thermore, coincidence locations with a peak height less than
50% will be discarded.

The major advantage of using interaural time differences
over other sound localization cues which rely on the partic-
ular anatomy of the head, is their relative independence on
the microphone (ear) mounting. Basically, the only parame-
ter affecting ITDs is the distance between the microphones.

This comes with the drawback that with ITDs only the
azimuth to a sound source can be determined in a range of
−90◦ to +90◦, resulting in ambiguities whether a source
is above, below, in front or behind the “head”. In mobile
robotics applications related to speech recognition, the rele-
vant information is azimuth to a source, so localization can
be restricted to the horizontal plane. This assumption elim-
inates the above/below ambiguities, leaving the front/back
confusions which can be resolved in most cases by incorpo-
rating the environmental knowledge of the robot.

Laser-based Object Recognition
The primary sensor our robot uses for localization and nav-
igation is a 360◦ laser range finder. In the following we
briefly describe how we do localization and object recog-
nition.

Localization
Our self-localization uses a Monte Carlo approach to lo-
calization (Dellaert et al. 1999). It works by approximat-
ing the position estimation by a set of weighted samples:
P(lt) ∼ {(l1,t, w1,t), . . . , (lN,t, wN,t)} = St. Each sample
represents one hypothesis for the pose of the robot. Roughly,
the Monte Carlo Localization algorithm now chooses the
most likely hypothesis given the previous estimate, the ac-
tual sensor input, the current motor commands, and a map
of the environment. In the beginning of a global localiza-
tion process the robot has no clue about its position and

therefore it has many hypotheses. After driving around and
taking new sensor updates the robot’s belief about its posi-
tion condenses to some few main hypotheses. Finally, when
the algorithm converges, there is one main hypothesis repre-
senting the robot’s strongest belief on its position. With the
above approach we are able to localize with high accuracy
in almost any indoor environment. The method is presented
in detail in (Strack, Ferrein, & Lakemeyer 2005).

For localization we use an occupancy grid map (Moravec
& Elfes 1985) of the environment. This allows us to ad-
ditionally apply a Novelty filter as described in (Fox et al.
1998) in the localization process. It filters readings which,
related to the map and the current believed position, are too
short and can thus be classified to hit dynamic obstacles.

Object Recognition
Based on the laser readings that where classified to be dy-
namic we perform object recognition. In a first step, groups
of dynamic readings are clustered. This is done based on the
fact that readings belonging to one particular object cannot
be farther away from each other then the diameter of the ob-
ject’s convex hull. To be able to distinguish between differ-
ent dynamic objects, we use the laser signature of the objects
for classification by size and form on the clustered groups af-
terwards. The dynamic objects are classified each time new
laser readings arrive. Thus, they can of course change both
in number and position. To stabilize the robot’s perception
we make use of the Hungarian method (Kuhn 1955) to track
objects from one cycle to the next.

The object recognition was originally developed for
robotic soccer. In the soccer setting we are able to distin-
guish between our own robots and opponents, and even hu-
mans can be told apart. Though, the only important infor-
mation there is whether the object is a teammate or an op-
ponent obstacle. Therefore, our heuristic for classification is
still rough at the moment.

Experimental Evaluation
Based on the combination of both the sound sources detected
and the objects recognized we investigated how to steer the
robot’s attention towards a direction of particular interest.

Matching Sound Sources and Objects
Our framework features a multi-threaded architecture. Sev-
eral modules are running in parallel each with its own cycle
time. The sound localizer component is able to produce az-
imuth estimates at a rate of about 32 Hz. A signal detector,
calibrated to the background noise level, ensures that only
signal sections containing more energy than the background
noise are used for localization. If new sound sources are de-
tected they are written to a blackboard where any other mod-
ule can retrieve them from. The information is organized
in a list which contains the azimuth of the sound sources
detected along with the corresponding peak heights. It is
sorted by descending peak height. Based on the information
provided by the localization module, the object recognition
module clusters the laser readings that have been classified
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Figure 1: Evaluation setup

as dynamic and computes the positions of dynamic obstacles
thereupon. Those objects are also written to the blackboard.

Our attention module which determines which action to
take runs with a frequency of 10 Hz, i.e. a new cycle starts
every 100 ms. In the first step, we check whether there is
new data from the sound localizer. If not, we are done al-
ready and skip this cycle. If there are sound sources avail-
able, we retrieve the corresponding list of angles and pro-
ceed.

For now, we only work on one sound source, that is the
one with 100% peak height. However, with some minor
modifications we could also process all sources detected.
We retrieve the relative angle to this source. Then we iterate
over all dynamic objects and search for the one object that
is in the direction of the sound source. Due to front/back
confusions, we have to check for both these directions. If
we find an appropriate object to match the sound with, we
schedule a command to the motor to turn towards this object
(and not to the sound source itself). An object is considered
appropriate if the relative angle from the robot to this object
does not differ more than 30◦ from the relative angle to the
sound source.

Figure 1 shows our evaluation setup. The robot just de-
tected a sound in the direction of the sitting person and has
matched it to a corresponding dynamic obstacle. It is about
to turn towards this object. In the upper right corner of the
picture one can see a box which was used to generate noises
that do not have any corresponding dynamic object. We gen-
erated the noise by simply hitting the box with a stick.

Preliminary Results
A first series of tests showed that in the vast majority of cases
the robot was able to correctly discriminate sounds emanat-
ing from dynamic objects (i.e. persons) from noises emitted
by the static object.

The correct turning behavior could be observed as long as
a dynamic object was not too close to the static object. In
that case, the robot would react to the noise emitted by the
static object, but would nevertheless turn towards the dy-
namic object.

The matching of sound sources to dynamic objects helped
in resolving front/back confusions. If there is no object in
front of the robot corresponding to the sound’s azimuth but

there is one behind it, the robot would turn to the one be-
hind it. Unfortunately, in symmetric situations ambiguities
remained. There were cases in which there were objects
in front of the robot as well as behind it which could both
match the estimated sound source azimuth.

As the tolerance between the angle to the sound source
and the angle to the dynamic object was arbitrarily chosen
to be rather large (30◦), these front/back confusions could
certainly have been reduced by choosing a smaller value.
This would also keep the robot from reacting to noise from
static objects if there was a dynamic object in the vicinity.
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