Assistive Technologies: Rehabilitation and Assistive Robotics

Neuro-robot for functional support of the human body

M. C. Carrozza, N. Vitiello, E. Cattin, S. Roccella, F. Vecchi, C. Cipriani, C. M. Oddo, L. Beccai

ARTS Lab, Polo Sant'Anna Valdera, Scuola Superiore Sant'Anna, Pisa, Italy <u>n.vitiello@sssup.it</u>

Scuola Superiore Sant'Anna, Pisa

Introduction

- The primary goal of bionics is "to extend man's physical and intellectual capabilities by prosthetic devices in the most general sense" (Von Gierke et al. 1970; Dario et al. 1993)
- Hybrid Bionic Systems (HBSs) can be defined generically as systems that contain both technical (artificial) and biological components, or biological systems with artificial elements or subsystems
- The basic assumption for designing new HBSs is to bring together neuroscience knowledge on sensory-motor control with robotic and interfacing technologies, while keeping the human person at the centre of the design approach
- This is the ultimate goal of the NEUROBOTICS project: the fusion of NEUROscience and roBOTICS), an "Integrated Project" funded by the European Commission (IST-FET-contract no. 001917-2003) and aimed at encouraging neuroscientists and roboticists to work together for jointly developing new, high performance HBSs

Two case studies of Hybrid Bionic Systems

- The NEUROEXOS platform: an upper limb exoskeleton to investigate functional support of human arm
- The CYBERNETIC HAND: an hand prosthesis to investigate functional replacement of upper limb

EXOSKELETON

"A hard outer structure, such as the shell of an insect or crustacean, that provides protection or support for an organism"

<u>Source</u>: The American Heritage® Dictionary of the English Language, Fourth Edition Copyright © 2000 by Houghton Mifflin Company. Published by Houghton Mifflin Company.

Design Methodology

- Functional Requirements were obtained from analytical and biomechanical models
- The models were evaluated experimentally in a catching platform designed for that purpose
- The models were exploited for designing a robotic arm with biomechanical properties similar to the human arm
- The robotic arm has been used as a test bed for assessing design criteria and technologies for the NEUROEXOS

NEUROEXOS

The catching task as a prototypical task

IROS 2007 – MW4 - Neuro-robot for functional support of the human body – Nicola Vitiello

ő,

Biomechanical model

Shoulder agonistic/antagonistic muscles activations

The NEURArm platform

NEURARM is a 2 DoF planar robot actuated in agonistic-antagonistic modality:

- Link masses and inertias similar to those of the European standard man
- o Remote hydraulic actuation
- Transmission by Bowden Cable and hydraulic piston stroke amplifiers
- High Sensorization:
 - joint angle
 - cable force
 - hydraulic piston stroke
 - hydraulic circuit pressures

E.Cattin, S.Roccella, N.Vitiello, I.Sardellitti, P.K.Artemiadis, P.Vacalebri, F.Vecchi, M.C.Carrozza, K.J.Kyriakopoulos, P.Dario, Design and Development of a Novel Robotic Platform for Neuro-Robotics applications: the NEURobotics ARM (NEURARM), *Int.Journal Advanced Robotics, Special Issue on Robotics Platforms for Neuroscience* (in press)

Human arm vs NEURArm (mehanisms /actuators)

Agonist-

contraction force

Agonist-antagonist cable driven

Cables fixed on the link (forearm) and on the joint (shoulder)

Hydraulic pistons in series with non-linear springs

DC - proportional electrovalves and force low level controller

ARTS

Human arm vs NEURArm (sensory system)

Linear **Muscle spindles** potentiometers in (stretching sensors) series with the actuators Muscle receptors Golgi tendon organs Force sensors on (tension sensors on cables the tendons) Joints Joint **Angle sensors Joint/Ski** receptors n **Force sensors** receptors in end effector and artificial Sensory system in hand with the hand sensors

ARTS

NEURARM is exploited in 4 experiments

- to verify the NEURARM ability to mimic the kinematics performances of the human arm: the catching task was proposed (concluded)
- 2. to investigate learning and sensory feedback for developing a new highly intuitive and efficient Human Machine Interface (ongoing)
- to evaluate a controller based on Feldman's equilibrium point hypothesis based on nonlinear springs (ongoing)
- to assess NEUROEXOS prototype (planning)

1. Catching Task – Controller

1. Catching Task – Controller (II)

The middle level controller is based on simple balance equations:

$$\begin{aligned} \tau_{sh} &= \Delta F \cdot R_{sh} = \left(F_{sh-Flex} - F_{sh-Ext}\right) \cdot R_{sh} \\ \begin{cases} F_{sh-Flex} &= F_{\Pr e-load} + \left|\Delta F\right| \\ F_{sh-Ex} &= F_{\Pr e-load} \end{cases} \quad if \quad \tau_{sh} \ge 0 \\ \begin{cases} F_{sh-Flex} &= F_{\Pr e-load} \\ F_{sh-Ex} &= F_{\Pr e-load} + \left|\Delta F\right| \end{cases} \quad if \quad \tau_{sh} < 0 \end{aligned}$$

 $F_{Sh-Flex}$ = shoulder flexor force F_{Sh-Ext} = shoulder extensor force R_{Sh} = shoulder moment arm The same algorithm is used for the elbow torque In order to perform the catching task the following parameters were used:

$$K = \begin{pmatrix} -28 & 4 \\ -4 & -12 \end{pmatrix} [\text{Nm/rad}] \quad B = \begin{pmatrix} -0.8 & 0 \\ 0 & -1.5 \end{pmatrix} [\text{Nms/rad}]$$

1. Catching Task – Experimental Results (I)

The desired trajectory was modelled from the output of the biomechanical analysis: a point-to-point straight line in the Cartesian Space, with a bell shape speed profile.

- 6 trials were performed to test repeatability
- According to experimental results the NEURArm is able to mimic the kinematic performance of the human arm that are relevant for NEUROEXOS and for experiments

1. Catching Task – Experimental Results (II)

1. Catching Task – Experimental Results (III)

50

1. Catching Task – Experimental Results (IV)

27S

1. Catching Task – video

On the NeuroEXOS development :KINEMATICS

The NeuroEXOS elbow module

NeuroExos Elbow Design

Preliminary Prototype

- Full kinematics compatibility by means 5 passive DoF: perfect matching between the robotics and human elbow joint axis
- The system is under patenting

The concept of the whole NEUROEXOS

The CyberHand

Hand mechanical specifications

- 16 d.o.f. total 6 d.o.m. total
- Underactuated fingers, each driven by a single cable actuated by a motor
- 6 d.o.m. : one for each finger (flexion/extension) + one for thumb positioning (adduction/abduction) 6 DC 6V motors
- trapezo-metacarpal thumb joint abduction/adduction range: 0°-120°
- finger joints flexion range: 0-90°
- Weight: Palm+fingers about 400 gr., Socket interface (actuation and transmission system) about 1400 gr.
- Grasping force: 35 N.
- Tip to tip force: 15 N.
- Anthropomorphic size, and kinematics.

Shared Control

Properties of a Cybernetic Hand

- Must be perceived by the user as the natural hand by encoding sensory feedback and stimulating afferent nerves (*Perceptual Illusion*)
- Must be controlled directly by the user brain by means of real time decoding of efferent signals (*Natural Motor Control*)

S. Micera, M.C. Carrozza, L. Beccai, F. Vecchi, P. Dario, Hybrid bionic systems for the replacement of hand function, Proc IEEE, (2006)

CyberHand Architecture

(01/05/2002 – 30/04/2005) IST-FET Project #2001-35094

Basic functionalities of the human hand

CYBERHAND sensory system from components (mechanosensors) to function

PROPRIOCEPTIVE system

5 tension sensors on the cables
15 Hall effect sensors embedded in all the joints of each finger
an incremental magnetic encoder and 2 stroke end Hall effect sensors on each of the 6 motors

PROPRIOCEPTION the ability to sense hand position and movement

EXTEROCEPTIVE system

contact sensorsthree-axial straingauge force sensors

EXTEROCEPTION sensing hand-objectenvironment interactions and exploring objectenvironment characteristics

The model for the sensory system is the Physiology of the Hand (Natural Perception, Action and Sensory-Motor Coordination)

"Stand-Alone" Mechatronic Hand

Recording and Stimulating Implantable System

IROS 2007 – MW4 - Neuro-robot for functional support of the human body – Nicola Vitiello

ab ton

The artificial skin

ARTS Lab

Brain-Robot Interfaces

Achille: AdvanCed HIgh Level controL interfacE A wearable interface to control external devices

ACHILLE is an intelligent human/machine interface for the wireless control of robotic artefact or external devices M. C. Carrozza et al, A Wearable Biomechatronic Interface for Controlling Robots with Voluntary Foot Movements, accepted for publication in IEEE/ASME Transactions on Mechatronics, (March 2007)

The ACHILLE prototype (Carrozza et al, IEEE TMECH, 2007)

Acknowledgements

IROS 2007 – MW4 - Neuro-robot for functional support of the human body – Nicola Vitiello

R75