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Although it is becoming largely accepted that the most effective way to improve functional 
outcomes in patients with stroke-related disability is to increase significantly the amount of 
meaningful task practice, the high cost of skilled rehabilitation often prevents the patients to 
receive such therapy. A possible method to increase the amount of practice for the rehabilitation 
of upper extremity functions in individuals with strokes in a cost-effective manner is to supplement 
the patient’s one-to-one interaction with a therapist with sessions on a robotic system. Although 
robots have been used with some success in the rehabilitation of arm movements after stroke, 
these systems do not parallel the role of the therapist in setting up functional tasks that require 
the subject to actively engage in challenging manipulation of physical objects. Our long-term goal 
is to develop such a robotic system that will engage the patient intensively and actively in 
manipulation tasks by presenting a number of tools whose dynamics will depend on the initial 
impairment level of each patient, and will vary during therapy as the patient’s performance 
improves.  

Here, we explore the implementation of realistic functional tasks on a general-purpose 
robot to be used for the rehabilitation of upper extremity functions. Although we could simply 
mount real functional tools on the robot end-effector, doing so would not able us to adapt the task 
difficulty to the patient’s performance. We thus need a model of the dynamics of each tool, such 
that the difficulty can be manipulated, by increasing stiffness for instance. 

 To achieve acceptable realism of our functional tasks, we need to model accurately the 
forces felt by the patient as she interacts with the tools. Because the force profiles of tools such 
as such as knobs, switches, keys, levers, etc., typically vary with the state of the system, simple 
parametric dynamics model with constant coefficients (inertia, viscosity, stiffness, and friction) 
cannot be used. Colton and Hollerbach (2005) modeled the dynamics of a linear spring in a 
quasi-noise free environment using a general linear model with Exponentially-Weighted Least 
Squares (EWLS). In EWLS the user specifies a priori a number of fixed-width rectangular basis 
functions (or “receptive fields”). Thus, a EWLS-based model with a large number of basis 
functions (such as that used by Colton and Hollerbach) can suffer from poor generalization if the 
noise level is high. To address this limitation, we propose here to use Receptive Field Weighted 
Regression (RFWR) (Schaal et al., 1998) to learn the unknown dynamics of common tools. We 
assume that the local dynamics of general 1DOF nonlinear mechanical devices can be 
represented by: 

0I( q,q,q ) q V( q,q,q ) q K( q,q,q ) q ( q,q,q )Fτ = + + +                  (1) 

where τ is the torque due to interaction with the subject, q  the angular position, q  the angular 

velocity, q  the angular acceleration, I  the inertia,V the damping, K  the stiffness, and 0F  the 
static force. In this context, RFWR incrementally constructs multiple local linear models (receptive 
fields) from input (position, velocity, acceleration) and output data (torque). The receptive fields 
are created adaptively when more accuracy is needed and deleted when the model is over-fitted. 
The dynamics of the tools is then approximated by weight-averaging multiple local linear models. 
Thus, RFWR can model tools dynamics with non-constant parameters with an optimal number of 
basis functions. 



In this preliminary work, we captured and modeled the dynamics of a readily 
commercially available doorknob (Figure 1). A magnetic motion monitor system measured the 
doorknob angle, and the torque/force sensor equipped for the robot controller was used to 
measure the interaction torque while a subject was manipulating the tool at various frequencies 
and amplitudes (the robot was positioned not to move).  

Our results show that the RFWR-based model correctly models the doorknob dynamics 
with only 2 receptive fields (Figure 2 and 3). Analysis of the model parameters showed that 
stiffness and damping varied as a function of position, but little as a function of velocity and 
acceleration; furthermore, inertia and static force were quasi-constant (Figure 4). In future work, 
to replay the dynamics of the functional tools, we will disabled the motion mechanism of the tool, 
attach this disable tool to the robot end-effector, and the robot will simulate the tool. One of the 
model’s parameters (presumably stiffness) will be then manipulated adaptively based on 
performance, such that the task become increasingly difficult as the patient recover.  
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     Figure. 1. Capturing the dynamics of a doorknob. The robot here is not 

activated (breaks on). In future development of the system, the robot will replay 
the dynamics of the tool adaptively, such as the task difficulty progresses as the 
patient’s performance improves.  
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Figure. 4. Parameters of the 

doorknob dynamics as a 
function of position. The 
parameters (blue line) are 
computed by weight averaging 
the two linear models (red dots) 
for each position. The stiffness 
coefficient K  (a) and damping 
coefficient V (b) decrease as 
position increases, while there 
is almost no change in the 
inertia I (c)  and the  static force 

0F  (d) as a function of position.  
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Measured torque trajectory from test data
Predicted torque trajectory from our model

 
Figure. 2. Measured (blue line) and predicted (green dash) torques. 
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Figure. 3. Training data (blue dot) generated by a subject manipulating the doorknob for 3 minutes, 
and center points (red circle) of the two receptive fields generated by RFWR. The center points are 
far apart in the position dimension, but close to each other in the velocity and acceleration d


