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Abstract 
In this paper a perception approach allowing for high 

distinctiveness is presented. The method works in 
accordance to the fingerprint concept. Such 
representation allows using a very flexible matching 
approach based on the minimum energy algorithm. The 
whole extraction and matching approach is presented in 
details and viewed in a topological optic, where the 
matching result can directly be used as observation 
function for a topological localization approach. The 
experimentation section will validate the fingerprint 
approach and present different set of experiments in order 
to explain practically the choice of different types of 
features. 
 

1. Introduction and motivation 

Research in mobile robot navigation has to focus on 
various issues in order to build a coherent working 
framework for navigation. Environmental modeling, 
perception, localization and mapping are all needed for a 
successful approach. Even though research has recently 
leaded to successful solutions, robust perception for the 
localization of a robot in unmodified, dynamic, real-world 
environments are rarely presented. 

 

Current research has diverged to two different approaches: 
• Metric: robot position defined by [ ]Tyx θ . 
• Topologic: position defined by places or locations 
 

In this paper we will concentrate in the perception and 
environmental modeling within a topological context. The 
robot will have to recognize its neighborhood in order to 
track its own position. 

 

Early works in topological localization [10] presented 
experimentations in simulations, avoiding facing the 
perception problem. Following works [7] were concerned 
with controlled environments, where the perception with 
sonars was enough for the navigation purpose. Only recent 

works within the topological community address the 
perception problem in its whole complexity in the real 
world. 

 

Successful vision-based navigation are currently limited 
to indoor navigation because of its dependence on ceiling 
features [1, 13], room geometry, or artificial landmark 
placement [8]. Other means for visual localization are 
applicable both indoors and outdoors, however they are 
designed to collect image statistics while foregoing 
recognition of specific scene features, or landmarks [12, 
15]. In this context [11] already introduced the fingerprint 
concept, but its perception was restricted to the CCD 
camera and the method has been studied in an absolute 
positioning approach, not a topological one. 

 

The presented method will propose an approach for the 
representation of a location allowing for robust perception 
for the topological paradigm. The system will use both a 
laser scanner and an omnidirectional camera for feature 
extraction. The experimentation will focus on some 
important characteristics needed by a topological 
approach, like uniqueness and distinctiveness. 
 

2. The fingerprint sequence 

As the fingerprints of a person are unique, so each 
location has its own unique characteristics. Of course, 
when relying on the limited perceptual capabilities of a 
machine, it is difficult to guarantee the unique distinction 
between two similar places. This localization system 
assumes that a virtual fingerprint of the current location 
can be created and that the sequence generation methods 
can be made insensitive to small changes in robot 
position. If fingerprints are associated to each location, 
then the actual location of a mobile robot may be 
recovered by constructing a fingerprint and comparing it 
to its database of known fingerprints. However, this 
characterization of the environment is especially 
interesting when used within a topological localization 
framework. In this case the distinctiveness of the observed 
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location plays an important role for the correct track of the 
robot position.  
 

2.1 Fingerprint sequence encoding 

We propose to create a fingerprint by assuming that a set 
of feature extractors can identify significant features in the 
environment around the robot. Omnidirectional sensors 
are preferred because the orientation as well as the 
position of the robot may not be known a priori. 

 

We define a fingerprint as a circular list of features, 
where the ordering of the set matches the relative ordering 
of the features around the robot. In order to encode 
efficiently this circular list, we denote the fingerprint 
sequence using a list of characters, where each character 
represents the instance of a specific feature type. A similar 
representation can be found in [3]. Any number of feature 
detectors can be used. For example, if we choose to 
extract color patches and vertical edges from visual 
information we may use the letter ‘v’ to characterize an 
edge and the letters A,B,C,...,P to represent hue bins. We 
will use this example for illustrating the sequence-
matching algorithm. 

 
2.2 Fingerprints matching for localization 

To introduce the problem of string matching, let us 
consider the example below. The first string has been 
extracted from the current location of the robot and the 
next two strings are strings from the database. 
 

Place x: vvBEvvCvvvMvOBvvvvv 
 
Database place 1: vvBEvMvCvvvMvMOBvvvv 
 
Database place 2: LvLvvvBvvOLvBEvOvvv 
 

Figure 1: Example of extracted fingerprints 

As one can see the first string does not match exactly 
either of the others because the robot is not exactly 
located on a map point and/or some change in the 
environment occurred. Now what sequence match scoring 
method should we use to determine that the match is 
Place1 in this case and not Place2 with high confidence? 

 

Great many string-matching algorithms can be found in 
the literature but they generally require the strings to have 
the same length. Some of them allow a level of mismatch, 
such as k-mismatch matching algorithms, and string 
matching with k differences [2, 4]. Another approach for 
matching consists in considering strings as digital signals 
and computing the correlation. A measure of similarity 
will be in this case the height of the maximum peak of the 
correlation function. 

 

One of the main problems of the above methods is that 
they do not consider the nature of features and specific 
mismatches. We wish to consider the likelihood of 
specific types of mismatch errors. For instance confusing 
a red patch with a blue patch is more egregious than 
confusing the red patch with a yellow patch. Furthermore 
the standard algorithms are quite sensitive to insertion and 
deletion errors which cause the string lengths to vary 
significantly. 

Minimum energy algorithm 
The approach we have adopted for sequence matching is 

inspired by the minimum energy algorithm used in stereo-
vision for finding pixels in two images that correspond to 
the same point of a scene [9]. As in the minimum energy 
case, the problem can be seen as an optimization problem, 
where the goal is to find the path that spends the minimum 
energy to go from the beginning to the end of the first 
sequence considering the values of the second one. The 
similarity between two sequences is given by the resulting 
minimum energy of traversal. Value 0 is used to describe 
a perfect match (e.g. self-similarity). 
 

We describe our sequence matching algorithm using an 
example consisting of two particular sequences: 
“EvHBvKvGA” (length n = 9) and “EBCAvKKv” (length 
m = 8).  
 

Initialization 
 

First the initial n x m matrix must be built. The characters 
of the first string represent the rows and those of the 
second string the columns. To initialize this matrix only 
two parameters are needed. The first parameter is a 
number that represents the maximum mismatch value and 
the second is used to fix the minimum mismatch value 
between two different colors. In this particular example 
Max_init = 20 and Min_col = 5. 
 

Init E B C A v K K v
E 0 11 8 14 20 20 20 20
v 20 20 20 20 0 20 20 0
H 11 20 17 17 20 11 11 20
B 11 0 5 5 20 11 11 20
v 20 20 20 20 0 20 20 0
K 20 11 14 8 20 0 0 20
v 20 20 20 20 0 20 20 0
G 8 17 14 20 20 14 14 20
A 14 5 8 0 20 8 8 20  

Figure 2 : Init matrix. It represents the level of mismatch between 
the features. 

If the corresponding features are of wholly different 
types (e.g. a color and an edge) then the corresponding 
matrix element is initialized to Max_init. If both features 
are vertical edges or represent exactly the same color the 
value 0 is used to describe a perfect match. If the 
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comparison is between two colors, then the error is 
calculated according to the hue distance between the two 
colors, adjusted to inhabit the range from Min_col to 
Max_init.   
 

Although a type-mismatch can be generally assigned a 
score of Max_Init, any newly introduced feature type must 
not only include the appropriate feature detector but also a 
mismatch table, identifying the score for various feature 
value comparisons within that feature type. This is an 
important aspect of the present work. 
 

The cost matrix computation 
 

This step computes the cost function for each cell of the 
matrix using only two parameters: the slope penalty 
(Slope_pen = 10) and the occlusion penalty (Occ_pen = 
24). The cost for going from one cell to another depends 
on the initial value (see Fig. 2) of the target cell, the 
distance between the cells (the slope) and the cost value of 
the origin cell. Occ_pen is used for horizontal and vertical 
occlusion (slopes 0 and infinity respectively)   
 

 
 

Figure 3: The Cost matrix and the optimal path (dots). There is an 
occlusion between the 7th and 8th line.  

The best path 
 

The minimum value of the last line of the Cost matrix 
corresponds inversely to the similarity between the two 
input sequences. In order to normalize the result this value 
is then divided by the worst value that can be obtained 
with two strings of similar length (in this case, result of the 
match between a string composed of m edges and one 
with n colors). 
 

3. Perception and feature extraction 

In this work the fingerprints are used for global 
localization in an office environment: the goal being to 
determine the office in which the robot is entering. The 
fingerprints can be very different depending on the 
position in the room. Even though the optimal solution 
would be to have no position requirements, in this work a 
positioning procedure ensuring that the robot will be close 

to the position on which the fingerprint’s database has 
been extracted is adopted. 

 
3.1 Positioning 

There are many alternatives for the positioning of a robot 
in a room. The robot could detect the threshold of the 
door and stop at the entrance or enter in the room until a 
pre-defined distance has been reached. The drawback of 
these methods is that they don’t consider the dimensions 
and the shape of the room. This can lead to non-optimal 
positions such as places close to obstacles obtruding most 
of the field of view of the room. Therefore, we assume 
that the position in the room with the most free space 
around it is the one with the highest probability of 
extracting numerous and characteristic features. This will 
ensure high distinctiveness of the observation. 

  

The laser scanner is used to compute the gravity center of 
the free space. Because the angle between two scan points 
is constant, the density of points is inversely proportional 
to the distance. To account for that effect, the points must 
be weighted, giving the following equation for computing 
the gravity center:   

 [ ]T
i iii ii yx

n
x ∑∑ ⋅⋅= ωω1r

 (1) 

where n is the number of scan points and ωi the 
corresponding weights which are set equal to the distances 
ri to the robot. 

 
3.2 Visual feature extraction 

Several types of features can be extracted from visual 
information. The color patches may be used but they are 
very sensitive to illumination and therefore their 
extraction suffers from a lack of robustness. We finally 
focused on edges because they are of particular value in 
structured environments such as indoor office buildings 
and are less sensitive to illumination changes. We have 
chosen to concentrate on vertical edges because of the 
instability and rarity of horizontal edges due to projection 
effects.  
 

We proceed in two stages for extracting the edges. The 
first step consists in unwrapping the panoramic image. 
This process is computationally expensive but produces a 
rectangular image (1257x190) that is easier to handle with 
standard image processing algorithms. Furthermore, 
vertical edge detection is difficult and time consuming on 
raw panoramic images (see Fig. 8). The second step uses 
the same histogram-based method as the one presented in 
[11] for extracting the vertical edges. We choose to use 
the letter ‘v’ to characterize a vertical edge feature. 
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3.3 Laser scanner features extraction 

Corners typically describe the shape of furniture, walls 
and other rectilinear obstacles. These features are 
semantically equivalent to the verticals extracted from the 
image. However, in contrast to the vertical edges, which 
are extracted with vision, corners are extracted with the 
laser scanner and are therefore only detected at a given 
height which corresponds to the position of SICK sensor 
on the robot.  

 

In order to detect the corners, we carry out an extraction 
of line segments, as illustrated in figure 4b. The Hough 
transform is then used [6]. The algorithm computes the 
slope between each successive point to find out which 
consecutive points belong to the same physical segment. 
This method presents the advantage of filtering the noise 
and all the dubious points. Finally, each end of the line is 
kept and regarded as an angle. We choose to use the letter 
‘c’ to characterize a corner feature. 

 
4. Fingerprint generation 

The fingerprint extraction is performed in three steps (see 
Fig. 4). The first step consists in extracting the vertical 
edges from the panoramic image and the corners from the 
laser scan. The features are arranged in an array along 
with their corresponding position (from 0 to 359 degrees). 

 At this stage we introduce a new type of feature that 
reflects a correspondence between a corner and an edge: 
the feature ‘f’. This is natural since this correspondence 
effectively describes a third feature type. For example, a 
black line on a wall will generate a vertical edge but won’t 
be detected by the laser scanner. Inversely, a corner at the 
intersection of two white walls won’t necessarily be 
detected as a vertical edge. The third possibility is that the 
same element in the scene is detected by the two sensors. 
The addition of that type of feature increases the 
distinctiveness of the generated fingerprint. If two 
consecutive ‘v’ and ‘c’ features are close enough (5 
degrees) they will be fused into an ‘f’ feature: this is the 
second step of the extraction.  

 

The ordering of the features in a fingerprint sequence is 
highly informative. However, introducing the notion of 
angular-distance between two consecutive features can be 
of high interest. This adds geometric information and 
increases once again the distinctiveness between the 
fingerprints. We found important to add this information 
without changing the structure of the fingerprint and the 
matching algorithm. Therefore, we decided to introduce a 
new type of feature, the empty space feature ‘n’, for 
reflecting angular distance. Each ‘n’ covers the same 
angle of the scene (20 degrees). So, as many empty spaces 
as needed must be inserted in order to fill the gap between 
two consecutive features. This insertion is the last step of 
the fingerprint generation method.  
 

 

 
 (a) 
 
 

 
 (b) 

0 120 240 360

v

0 12 0 2 4 0 3 6 0

c

0 120 240 360

f

0 12 0 2 4 0 3 6 0

f

 
 (c) 

Figure 4 : Fingerprint generation. (a) vertical edges detection ‘v’ (b) laser scan with extracted corners ‘c’ (c) the first two graphs depict the 
positions (0 to 360°) of the vertical edges and the corners respectiveley. Graph ‘f’ shows the result of the correspondance between the 
features ‘v’ and ‘c’. The last graph depict the fingerprint before the insertion of the empty space features( the arrows show the insertion 
points for the empty spaces features). The final string is :   n f f n f c f f f c c c f v f c n v c f n n n f n v c c f n f v c 

‘n’ ‘n’‘n’‘n’ ‘nnn’ 
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5. Experimental Results 

The approach has been tested in the 50 x 25 m2 
portion of the institute building shown in figure 5. 
 

 
Figure 5: The test environment. The arrows indicate the rooms 
in which the experimentation has been done. The tenth room is 
not represented on the image. 

For the experiments, Donald Duck (see Fig. 6), a fully 
autonomous mobile robot, has been used.  

 

 

 Its controller consists of a VME
a Motorola PowerPC 604 micro
MHz running XO/2, a hard re
Among its peripheral devices, t
wheel encoders, a 360° lase
omnidirectional camera. The 
depicted in figure 7 uses a 
image 360° in azimuth and up to

 
 

 

 

 

 

Figure 7: The panoramic vision s
640x480 pixels resolution and an e
that each pixel in the image covers 

The use of an omnidirectional camera combines the 
advantages of the SICK laser range finder (e.g. an angle 
of view of 360°) and the capability of detecting verticals. 
This will bring considerable information to the system. 
Positioning 

In this section the positioning capabilities of the robot is 
tested and analyzed. For the experiments, the robot 
visited ten rooms of the environment depicted in figure 5 
and tested the method four times in each room. The 
results are conclusive: the robot reaches all the time the 
center of the free space (see Fig. 8). 

Figure 8: Different views of the free space taken by the 
panoramic vision system. The position of the robot corresponds 
to the center of the free space measured by the laser scanner. 

The repeatability was also tested: the robot reached an 
area of radius of 15 cm around the center of the free 
space. 

 
Localization 

In order to test the quality of the proposed features, the 
localization approach has been tested for three cases: 

 

• Vertical edges and corners only. 
• Vertical edges, corners and empty spaces. 

 
 

 
 

Figure 6: The fully
autonomous robot
Donald Duck. The
panoramic vision
system has been
mounted right above
the wheels. So, for a
given position, the
fingerprint extraction
does not depend on
the robot’s orientation.
 standard backplane with 
processor clocked at 300 

al-time operating system. 
he most important are the 
r range finder and an 

panoramic vision system 
mirror-camera system to 
 110° in elevation.  

ystem. The camera has a 
quiangular mirror is used so 
the same view angle. 

• Fused verticals/corners, verticals, corners and 
empty spaces. 

 

For each of the ten test rooms, a fingerprint has been 
extracted after the robot has positioned itself in the center 
of the free space. This experiment has been repeated four 
times for each room. One fingerprint per room has then 
been included in a database as reference (map) for the 
localization approach. The other 30 fingerprints (3 per 
room) have been matched to the database for testing the 
localization. The results of the matching algorithm 
presented in section 2 are normalized to have a 
probability (between 0 and 1).  
For a given observation (fingerprint), a match is 

successful if the best match with the database (highest 
probability) corresponds to the correct room. For the first 
experiment set we used only the vertical edges and the 
corners regrouped in a single fingerprint. In this case the 
percentage of successful matches is 64%. The second set 
of experiments introduced the empty space concept. The 
results improved with a percentage of successful matches 
of 73%. In the last experiment, the correspondences ‘f’ 
between the verticals and the corners has been added to 
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the already tested features. The results have been further 
improved with a success rate of 77% (see Table 1).  

 

 
Table 1: The success rate depends on the chosen features set 
 

Even if the presented method does not lead to a perfect 
success rate, it still delivers valuable information for 
false-matched rooms. This is an important characteristic 
of the presented method. When the room is successfully 
matched, the minimum energy algorithm gives a high 
probability: 0.83 in average and between 0.7 and 0.98. 
Even if it detects the correct room with the second or 
third highest probability, a localization approach, like for 
example a Partial Observable Markov Decision Process 
(POMDP) [5, 14] can use this information. In the 
experiments, the observations, which were not 
successfully matched, were in second or third place with 
a probability going from 0.5 to 0.7 (average 0.62). All 
these results are summarized in the following Table. 
 

 
Table 2: Probabilities for successful and unsuccessful matches 

 
6. Conclusion and outlook 

This paper presented the fingerprint concept as potential 
observation function within a topological framework for 
localization. The fingerprint structure with its circular 
sequence and the string-matching algorithm allow 
inserting any kind of features. This is shown in section 3, 
where four different kinds of feature from a laser scanner 
and an omnidirectional camera are presented. Using 
different features from multiple sensors allows improving 
the distinctiveness of the fingerprints as it as been proven 
in section 5. 

The experiments show the robustness of the matching 
algorithm against occlusions and false detections, which 
often occur. By comparing 30 test fingerprints with the 
database composed of 10 rooms/fingerprints, the success 
rate (correct room with highest probability) is 77%.  The 
remaining 23% also have high probability for the correct 
room (0.5 – 0.7). Even if the correct room has not the 
highest probability, this information can still be used for 
localization e.g. by employing a localization approach 
like a POMDP. 
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Features set Success rate 
Verticals & corners 64% 

Verticals, corners & empty spaces 73% 
Fusion, verticals, corners & empty 77% 

 MinProb MaxProb AvgProb
Successful match 0.70 0.98 0.83 
Not successful match 0.50 0.70 0.62 
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