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Abstract 
 
This thesis is about topological navigation, more precisely about space representation, 
perception, localization and mapping. All these elements are needed in order to obtain a 
robust and reliable framework for navigation. This is essential in order to move in an 
environment, manipulate objects in it and avoid collisions. The method proposed in this 
dissertation is suitable for fully autonomous mobile robots, operating in structured 
indoor and outdoor environments.  
 
High robustness is necessary to obtain a distinctive and reliable representation of the 
environment. This can be obtained by combining the information acquired by several 
sensors with complementary characteristics. A multimodal perception system that 
includes the wheel encoders for odometry and two extereoceptive sensors composed of 
a laser range finder that gives a 360° view of the environment and an omnidirectional 
camera are used in this work. Significant, robust and stable features are extracted from 
sensory data. The different features extracted from the extereoceptive sensors (i.e. 
corners, vertical edges, color patches, etc.) are fused and combined into a single, 
circular, and distinctive space representation named the fingerprint of a place. This 
representation is adapted for topological navigation and is the foundation for the whole 
dissertation. 
 
One of the major tasks of a mobile robot is localization. Different topological 
localization approaches based on the fingerprint concept are presented in this 
dissertation. Localization on a fingerprint-based representation is reduced to a problem 
of fingerprint matching. Two of these methods make use of the Bayesian Programming 
(BP) formalism and two others are based on dynamic programming. They also show 
how multimodal perception increases the reliability of topological localization for 
mobile robots. 
 
In order to autonomously acquire and create maps, robots have to explore their 
environment. Several exploration tools for indoor environments are presented: wall 
following, mid-line following, center of free space of a room, door detection, and 
environment structure identification. 
 
An automatic and incremental topological mapping system based on fingerprints of 
places and a global localizer using Partially Observable Markov Decision Processes 
(POMDP) are proposed. The construction of a topological mapping system is combined 
with localization, both relying on fingerprints of places, in order to perform 
Simultaneous Localization and Mapping (SLAM). This enables navigation of an 
autonomous mobile robot in a structured environment without relying on maps given a 
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priori, without using artificial landmarks and by employing a semantic spatial 
representation that allows a more natural interface between humans and robots. The 
fingerprint approach, combining the information from all sensors available to the robot, 
reduces perceptual aliasing and improves the distinctiveness of places. This fingerprint-
based approach yields a consistent and distinctive representation of the environment 
and is extensible in that it permits spatial cognition beyond just pure navigation. 
 
All these methodologies have been validated through experiments.  Indoor and outdoor 
experiments have been conducted over a distance exceeding 2 km. The fingerprints of 
places proved to provide a compact and distinctive methodology for space 
representation and place recognition – they permit encoding of a huge amount of place-
related information in a single circular sequence of features. The experiments have 
verified the efficacy and reliability of this approach.  
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Résumé 
 
Cette thèse porte sur la navigation topologique, et plus précisément sur la 
représentation spatiale, la localisation et la construction de cartes. Tous ces éléments 
sont nécessaires afin d’obtenir un cadre de travail robuste et fiable pour la navigation. 
Ceci est essentiel pour se déplacer dans un environnement, manipuler des objets dans 
celui-ci et éviter des collisions. La méthode proposée dans cette dissertation convient 
aux robots mobiles autonomes, opérants dans des environnements intérieurs et 
extérieurs structurés. 
 
Afin d’obtenir une représentation distincte et fidèle de l’environnement, une robustesse 
importante est nécessaire. Il est possible de l’obtenir en combinant les informations 
acquises par des différents capteurs avec des caractéristiques complémentaires. Un 
système de perception multimodale a été utilise dans ce travail. Il inclut des encodeurs 
de roues pour l’odométrie et deux capteurs extéroceptifs composes d’un laser scanner 
capable de donner une vue à 360 degrés de l’environnement, et une camera 
omnidirectionnelle. Des features robustes, précises et significatives sont extraites des 
données sensorielles. Les différentes features extraites des capteurs extéroceptifs (par 
exemple : les coins, les lignes verticales, les couleurs, etc.) sont fusionnées et 
combinées dans une représentation spatiale circulaire, unique et distincte appelée 
« signature d’un lieu » (fingerprint of a place). Cette représentation est adaptée pour la 
navigation topologique et il s’agit du fondement même de cette entière dissertation. 
 
Une des tâches principales pour un robot mobile est la localisation. Différentes 
approches de localisation topologique basées sur le concept des fingerprints sont 
présentées tout au long de ce travail. La localisation basée sur la représentation à l’aide 
de fingerprints se réduit à un problème de correspondances entre fingerprints. Deux de 
ces méthodes utilisent un formalisme de Programmation Bayesienne (BP) et les deux 
autres sont basées sur la programmation dynamique. Elles décrivent également 
comment la perception multimodale augmente la fidélité de la localisation topologique 
pour des robots mobiles. 
 
Afin d’obtenir et de créer de façon autonome des cartes, les robots doivent explorer leur 
environnement. Plusieurs outils d’exploration pour les environnements intérieurs sont 
présentés : le suivi de mur (wall following), le suivi de ligne du milieu (mid-line 
following), le centre d’une espace libre d’une pièce (center of free space), la détection 
de portes, et l’identification de structure de l’environnement. 
 
Un système de construction de cartes topologiques automatique et incrémental basé sur 
les fingerprints of places, ainsi qu’une localisation globale utilisant les Processus 
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Décisionnels Partiellement Observables de Markov (POMDP) sont proposés. Le 
développement d’un système de construction de cartes topologiques est combiné avec 
la technique de localisation globale, toutes deux s’appuyant sur les fingerprints of 
places, afin de donner une solution au problème nommé Simultaneous Localization and 
Mapping (SLAM). Ce qui permet la navigation d’un robot mobile autonome dans un 
environnement structuré sans s’appuyer sur les cartes apprises auparavant et sans 
utiliser des points de repère artificiels. L’approche à base du concept de fingerprints, en 
combinant les informations provenant de tous les capteurs disponibles du robot, réduit 
le perceptual aliasing et améliore la distinction des lieux. Elle donne également une 
représentation consistante et distincte de l’environnement, et est extensible dans la 
mesure qu’elle permet la cognition spatiale au delà de la pure navigation. 
 
Toutes ces méthodologies ont été validées à travers des expérimentations. Des 
expériences ont été conduites à l’intérieur et à l’extérieur sur une distance supérieure à 
2 km. Les fingerprints of places permettent de produire une méthode compacte et de 
distinction pour la représentation spatiale et la reconnaissance de lieux – ils permettent 
l’encodage d’une énorme quantité d’informations propres aux lieux dans une simple et 
unique séquence circulaire de caractéristiques. Les expériences ont permis de vérifier 
l’efficacité et la validité de cette approche. 
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1  

Introduction 

 “The important thing is not to stop questioning.” 
 
Albert Einstein (1879-1955) 

If asked to describe what mental picture the word "robot" evokes, most people would 
rather describe something from science fiction (e.g., Sonny of I, Robot; C3PO of Star 
Wars) than scientific reality. In the past, most robots were developed for use in 
relatively stable and structured environments (e.g., manufacturing, welding, spraying); 
however, in the past 20 years, robotics researchers have been continually advancing the 
state of robotics - moving our images of robots from science fiction closer to reality. 
One day, robots will have the same level of impact on our lives, as personal computers 
have today. 
 
One of the most fundamental tasks that a robot should be able to accomplish is 
navigation in the environment. This implies the need for mobility and interaction with 
the environment (e.g. the movement within an environment, the manipulation of 
objects in it, and the avoidance of collisions). This thesis addresses the above 
mentioned broad objective, and focuses on space representation, perception, 
localization and mapping.  
 
The introductory part contains a description of existing work related to the navigation 
framework, and focuses on the problems addressed in this work. 
 



20  1.   Introduction 

 

 
1.1 Space Representation 
 
In all our daily activities, the natural surroundings that we inhabit play a crucial role. 
Many neurophysiologists have dedicated their efforts towards understanding how our 
brain can create internal representations of the physical space. Both neurobiologists and 
roboticists are interested in understanding the behavior of intelligent beings like us and 
their capacity to learn and use their knowledge of the spatial representation in order to 
navigate. The ability of intelligent beings to localize themselves and to find their way 
back home is linked to their internal “mapping system”. Most navigation approaches 
require learning and consequently need to memorize information. Stored information 
can be organized into cognitive maps – term introduced for the first time in 
[Tolman48]. Tolman’s model advocates that the animals (rats) don’t learn space as a 
sequence of movements; instead the animal’s spatial capabilities rest on the 
construction of maps, which represent the spatial relationships between features in the 
environment. 
 

Various methods have been proposed to represent environments in the framework of 
autonomous navigation, from precise geometric maps based on raw data or lines to 
purely topological maps using symbolic descriptions. Each of these methods is optimal 
with respect to some characteristics but can be very disappointing with respect to 
others.  
 

Most current approaches make a trade-off between precision and global distinctiveness. 
Precision and distinctiveness have a strong link with the level of abstraction of the 
features used for navigation (see Figure 1.1).  
 

Raw data represents the lowest level in the hierarchy of abstraction. Localization and 
mapping with raw data can result in very high precision of the represented 
environment, but the required data volume scales very badly with the size of the 
environment and the distinctiveness of the individual data points is very low. An 
example of such an approach is Markov localization [Fox98], [Thrun01].  
 

The second level of abstraction corresponds to geometric features (e.g. lines, edges). 
The stochastic map technique to SLAM [Castellanos99], [Dissanayake01], [Leonard92] 
and the multi-hypothesis localization [Arras03] are typical examples belonging to this 
level. These approaches still feature high precision with reduced memory requirements, 
but have shortcomings concerning global distinctiveness and non modeled events.  
 

Partially geometric features correspond to the third level of the hierarchy. Significant 
progress has been made since the seminal papers by Kuipers [Kuipers78] and 
[Kuipers91], where an approach based on concepts derived from a theory on human 
cognitive mapping is described as the body of knowledge representing large scale 
space. Representations using partially geometric features are demonstrated using 
fingerprints of places (i.e. a circular sequence of low level features) described in this 
thesis, and the more bio-inspired approaches shown in [Arleo00], [Berthoz97], and 
[Hafner00] using neural networks.  
 

On the highest level of abstraction, the environment is represented by a purely symbolic 
description. This can be very compact and distinctive, but reliable tools for extraction 
of high level features are still missing.  
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Figure 1.1: Hierarchy of abstraction levels.  
 
 
These levels of abstraction are represented in a pyramidal form as depicted in  
Figure 1.1. It can be noticed that the more we go up the hierarchy, the more the 
geometric information is reduced and distinctiveness is increased. For global 
localization and mapping, high distinctiveness is of importance, whereas for local 
action, precise geometric relations with the environment are more critical. 
 

Navigation strategies are based on two complementary sources of information 
(available on the mobile agent: animal, robot): idiothetic and allothetic. The idiothetic 
source yields internal information about the mobile agent’s movements (e.g. speed, 
acceleration, etc.). Allothetic sources of information provide external information about 
the environment (e.g. the cues coming from the visual sensors, odor sensors, laser range 
finders, sonars, etc.). Idiothetic information provides a metric estimate of the agent’s 
motion, but suffers from error accumulation, which makes the position estimation 
unreliable at long-term. In contrast, the allothetic (sensory) data is stationary over time, 
but is susceptible to perceptual aliasing (i.e. observations at multiple locations are 
similar) and requires non-trivial processing in order to extract spatial information.  
 
The map-based navigation needs map-learning and localization. Map-learning is the 
process of constructing a map representing the environment explored by the mobile 
agent and localization is the phenomenon of finding the mobile agent’s location 
(position) in the map. Localization and mapping are interdependent – to localize the 
robot, a map is necessary and to update a map the position of the mobile agent is 
needed. This is usually known as Simultaneous Localization and Mapping (SLAM). 
While navigating in the environment, the mobile agent first creates and then updates the 
map. 
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1.2 Problem Statement and Contributions 
 

As previously mentioned, many methods for localization and mapping have been 
proposed. However, navigation approaches capable of coping with both structured 
indoor and outdoor environments and at the same time permitting a higher level, 
symbolic representation of space are very rare. The aim of this thesis is to contribute 
towards gaining a better understanding of these problems. The research work proposed 
in this dissertation is based on a multi-modal, feature-based representation of the 
environment, called a fingerprint of a place. It also proposes concrete solutions for 
improving the distinctiveness of space representation, localizing the robot and building 
compact and reliable topological maps. 
 

This work contributes to following fields: 
 

• Space Representation: navigating in unknown environments requires the 
development of an adapted structure capable of representing space in a compact 
fashion, minimizing the ambiguities due to perceptual aliasing and increasing 
the distinctiveness of space. The fingerprint of a place is proposed as an 
efficient and distinctive methodology for representing space. This 
characterization of the environment is especially interesting when used within a 
topological and multiple modality framework. 

 

• Localization: localization is one of the fundamental problems in mobile 
robotics. Different methods for fingerprint based localization have been 
developed, implemented and tested both for indoor and outdoor environments. 
The localization problem is reduced to one of matching sequences of local 
features representing the environment. 

 

• Exploration: a mobile robot has to explore its environment in order to construct 
maps. Probabilistic tools are proposed for indoor exploration. A new method for 
doors and indoor structures recognition based on the Bayesian Programming 
formalism is also proposed in this work. 

 

• Mapping: a robust navigation system requires a spatial model of physical 
environments. In this work, a topological representation of space has been 
chosen. The topological map can be viewed as a graph of places, where at each 
node, the information concerning the visible landmarks (i.e. the fingerprints of 
places) and the way to reach other places connected to it, is stored. The 
fingerprints of places permit the construction of maps that are compatible with 
the topology of the environment. The fingerprint-based approach for mapping, 
presented in this dissertation, yields a consistent and distinctive representation 
of the environment and is extensible in that it permits spatial cognition beyond 
just pure navigation.  

 
All approaches introduced in this work have been validated on the two mobile 
platforms, the BIBA robot for indoor experiments and the ”SMART” vehicle for 
outdoor experiments, respectively. These two platforms are described in more detail in 
the next section. The experiments have been conducted in several indoor and outdoor 
environments. The indoor environments used in this work are a part of our institute 
building, as depicted in Figure 4.8. They include scenarios found in typical office 
environments such as places that look a same (e.g. corridors) and people moving 
around. The outdoor environment is part of the EPFL campus. 
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1.3 The Platforms 
 
For the work reported here, two mobile platforms have been used: the BIBA robot (see 
Figure 1.2(a)) for indoor experiments and the ”SMART” vehicle  
(see Figure 1.2(b)) for outdoor experiments.  The BIBA robot has been built for the 
BIBA (i.e. Bayesian Inspired Brain and Artefacts) European project and it was designed 
by BlueBotics SA, a spin-off of the Autonomous Systems Lab at the Ecole 
Polytechnique Fédérale de Lausanne (EPFL).  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.2: Mobile Platforms: (a) Indoor Platform: The fully autonomous BIBA robot. 

(b) Outdoor platform: The ”SMART” vehicle. 
 
The relevant characteristics of each platform are mentioned below. 
 
A. BIBA Robot 
 

• Computers: 
 

- PowerPC 750 400 MHz running XO/2 operating system 
 

- PC Intel Pentium III 700 MHz running Windows 2000 
 

• Sensors: 
 

- Two SICK LMS200 laser range finders that give a panoramic view of 
 the environment (except the two blind zones) (see Chapter 2) 
 

- Four ultrasound I2C modules 
 

- 3x5 Infrared sensors 
 

- Omnidirectional Vision System: 
- Camera: SONY DFW VL500 
 

- Mirror: “360 One VR” equiangular mirror  
 

- Motors with encoders and harmonic drives and EC motor amplifiers 
 

(a) (b) 
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- Bumpers – four tactile zones around the robot 
 

• Mechanics: 
 

- Chassis 
 

- Two drive wheels in differential drive arrangement 
 

- Front castor wheel 
 

• Communication: 
 

- Wireless Ethernet 802.11 
 

• Autonomy:  
 

- Two batteries (12 V) that provide up to 2 hours of autonomy  
 

• External Measurements: 
 

- Size:  42 cm width x 54 cm depth x 56 cm height 
 

- Weight: 30 kg 
 

B. ”SMART” vehicle equipped for autonomous driving 
 

• Computers: 
 

- PC Intel Pentium IV 2.4 GHz running Unix 
 

• Sensors: 
 

- Three SICK LMS200 laser range finders; two laser range finders 
mounted on top of the vehicle that give a panoramic view of the 
environment (except the two blind zones) (see Chapter 2) and one in front of 
the car for obstacle detection. 
 

- One Inertial Measurement Unit (IMU) delivering angular speed, and 
angular and translational accelerations of the car 
 

- CAN (Controller Area Network) bus delivering data of the actual 
steering angle and the actual speed of the vehicle 
 

- A stereo-vision system composed of two monocular cameras  
SONY DFW VL 500. 
 

- Omnidirectional Vision System: 
- Camera: SONY DFW VL500 
 

- Mirror: “360 One VR” equiangular mirror  
 

• Mechanics: 
 

- Engine type: 3-cylinder in-line engine at rear with turbo charger, charger 
cooler 
- Capacity in cc: 698 

 

• External Measurements: 
 

- Size:  2.5 m width x 1.515 m depth x  1.815 m height 
 

- Weight: 730 kg 
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1.4 Thesis Outline 
 
The previously described sections briefly synopsize the motivations, problems and 
contributions of the thesis. This section outlines the structure of the thesis and 
summarizes each of the chapters. 
 
Chapter 2 describes the sensors - laser range finder, odometry and omnidirectional 
camera - relevant to this work and shows the importance of having multi-modal 
perception. These sensors are useful for the main task of this work: localization and 
mapping.  
 
Different methods for features extraction from range data and omnidirectional images 
are introduced and discussed in Chapter 3. These features are fused and combined into 
a single and distinctive space representation named the fingerprint of a place. This 
representation is adapted for topological navigation and is the foundation for the next 
chapters. 
 
Chapter 4 presents several approaches for topological localization using fingerprints of 
places. These techniques for localization are tested both in indoor and outdoor 
environments and a comparison of all of them is reported.  
 
In Chapter 5, exploration techniques are addressed. In order to have a complete 
navigation system, the robot has to have the ability to move through the environment 
autonomously. Hence, methods for wall and corridor following, door detection and 
indoor topological structures identification are presented. By combining the different 
behaviors, the robot easily navigates and applies exploration strategies 
 
Chapter 6 presents a new automatic and incremental topological mapping system 
based on fingerprints of places and a global localizer using Partially Observable 
Markov Decision Processes (POMDP). The construction of a topological map is 
combined with localization, both relying on fingerprints of places, in order to perform 
Simultaneous Localization and Mapping (SLAM). The obtained maps are compact, 
consistent and distinctive. The method for topological SLAM has been validated in 
indoor and outdoor environments.  
 
Finally, Chapter 7 evokes the main points of this dissertation, raises some questions 
related to the presented work and points to further questions and work still to be done. 
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2  

Multi-Modal Perception 
 
2.1 Introduction  
 
In order to be able to develop autonomous and intelligent robotic systems, sensors and 
data fusion techniques are needed. Unstructured environments involves unforeseen and 
unpredictable environment characteristics (including dynamic objects and human 
beings), thus making sensing very critical for mobile robots. These sensors are 
embedded in the robot system and they can be classified as proprioceptive and 
extereoceptive sensors. Proprioceptive sensors measure and monitor the internal state of 
a robot (e.g. motor speed, temperature, acceleration). In this work, only the wheel-
encoders are used as proprioceptive sensors. The purpose of extereoceptive sensors is to 
measure environment features such as distance, color and luminosity. These sensors 
help the robot to detect the changes in the environment, to avoid obstacles and to 
correct the errors encountered in the world model. However, perfect sensors do not 
exist. Each sensor provides different kinds of information and has its positive and 
negative sides. In order to overcome the limitations of the individual sensors, in this 
work, a multi-sensory perception system is used. By adopting a multi-sensory approach, 
fusing sensory input from various sensors, a more accurate and robust perception 
system is realized. The resulting measurement (of the world state) is thus much more 
reliable. This chapter illustrates the multi-sensory perception system used in this thesis. 
It elaborates on the various sensors used and elicits how the internal / external states are 
measured. The sensors used in this work include wheel encoder, two laser range finders 
and an omnidirectional camera. 
 
 
2.2 Odometry 
 
As mentioned earlier, wheel-encoders are internal-state sensors and they measure the 
motion of a mobile robot. Odometry yields good short term accuracy, is inexpensive 
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and permits sampling rates that are very high. Identifying the odometry errors of a 
mobile robot is of high importance both in order to reduce them, and to  
   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1: The differential drive system of the BIBA robot with the two incremental 
encoders, drive wheels and motors. 

 

determine the accuracy of the state estimation based on encoder data. Odometry is 
characterized by two types of errors: systematic and non-systematic.  
 

Systematic errors occur due to asymmetries and uncertainties in robot production and 
assembly (e.g. unequal wheel diameters produce curved trajectories; uncertainty about 
wheel base produces errors in turn angle). These errors can be identified and adjusted. 
Borenstein and Feng in [Borenstein94] propose a calibration technique called 
UMBmark test, developed to calibrate the systematic errors of a mobile robot equipped 
with a differential drive system.  
 

Non-systematic errors are random errors. Situations in which these can appear include 
uneven and slippery floors. Non-systematic errors can basically be generated by wheel 
slippage and backlash, and non-continuous sampling of wheel increments [Chong97]. 
These errors can be modeled by describing the interaction between system’s dynamic 
and the error sources. 
 

In [Borenstein96], Borenstein et al. elicit the different possible sources of both these 
kinds of errors and a method for calibration and quantification of systematic and non-
systematic errors. 
 

The indoor robot used in this work has a differential drive kinematics (see Figure 2.1). 
In order to model the odometry error of such a system, the error in the displacement of 
each wheel (left and right) is calculated separately, and the uncertain control input is 
expressed as: 
 

[ ]TLRku δρδρ ,)1( =+ , 

where Rδρ  and Lδρ  are the displacements of the right and left wheel respectively.  
 

(2.1)
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Chong and Kleeman in [Chong97] proposed a model for errors in the wheel space, 
starting from the uncertain input )1( +ku  and the diagonal input covariance matrix: 
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where Rk and Lk  are two constants (with unit meter) representing the non-systematic 
parameters of the motor drive and the wheel floor interaction.  
 

Some assumptions were made when the covariance matrix shown in Equation (2.2) was 
calculated:  
 

• the errors of the individually driven wheels are independent (the covariance 
matrix is diagonal)  

 

• the variance of the errors is proportional to the absolute value of the traveled 
distances  Rδρ  and Lδρ . 

 

The main idea of odometry is the integration of incremental motion information over 
time, which leads inevitably to the accumulation of errors. The accumulation of 
orientation errors produce large position errors, which increase proportionally with the 
distance traveled by the robot. This process is depicted in Figure 2.2. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2.2: Growing position uncertainty with odometry for straight-line movement. 
The ellipses show the uncertainty error that grows with respect to the distance traveled. 

Note that the uncertainty in y grows much faster than in the direction of mouvement, 
due to the integration of the uncertainty about the robot’s orientation. 

 
Let [ ]TyxX θ= be the state of the robot composed of the Cartesian coordinates of 
the robot ),( yx  and θ  its orientation with respect to a global reference frame. The 
kinematic model (i.e. the estimation of the position of the robot after performing the 
action) can be described as: 
 

(2.2)

O 

      y[m] 

x[m]

uncertainty error
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The associated uncertainty is given by the following expression: 
 

T
uu

T
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where xf∇ and uf∇ are the Jacobians taken with respect to the uncertain inputs 

)1( kkx +  and )1( +ku .  
 
A more detailed description is given in [Siegwart04]. A method for on-the-fly 
odometry error estimation is presented in [Martinelli03b].  
 
 
2.3 Laser Range Finder 
 
In this work, the laser range finder is used as one of the sources of information for 
feature extraction. The laser range finder is an active (i.e. an active sensor is a sensor 
that emit energy into the environment and measure the environmental reaction) time-of-
flight sensor that scans its surroundings two-dimensionally. The time-of-flight principle 
measures the time taken by the emitted light to travel to an obstacle and return back. 
Thus, in order to compute the distance between objects and the measurement device, 
the elapsed time between emission and reception of the laser pulse is calculated. 
 
The BIBA robot (see Figure 1.2(a)) and the ”SMART” vehicle (see Figure 1.2(b)) are 
both equipped with two laser scanners of the type LMS200, by SICK AG. Each sensor 
covers 180° degrees. Mounted back to back, the two laser range finders construct an 
omnidirectional distance measurement system, except for a blind-zone on the left and 
on the right of the robot (see Figure 2.3). 
 

The laser range finder LMS200 by SICK AG is an industrial device; it is widely used in 
mobile robotics. This device performs twenty five 180° degrees scans per second. 
Depending on its mode, the sensor has a measurement range of 8 to 80 meters. The 
angular resolution can be 0.25°/0.5°/ 1° degree (selectable). 
 
The measurement range of the scanner depends on the reflectivity of the target object 
and the transmission strength of the scanner. The amount of light reflected 
 
 

(2.3)

(2.4)
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Figure 2.3: (a) The LMS200 by SICK AG with its scanning angle of 180°, its direction 
of transmission and its blind zones (image as depicted on the official website of SICK: 

http://www.sick.com/saqqara/IM0012759.PDF); (b) The two laser range finders 
mounted back to back, with their blind zone 

 
 

depends on the nature of reflecting surface (composition, structure, density, color and 
so on), the texture of the reflecting surface (smooth or rough, regular or irregular, dull 
or polished, etc.), the wavelength and polarization of the light, the angle at which the 
light strikes the surface. While laser range finders are known for their accuracy, they 
also suffer from a severe limitation of being unable to detect / measure transparent 
objects/targets such as glass. This limitation may prove very impairing in certain 
scenarios such as the typical indoor environments found in museums. 
 

Even if the laser scanner provides high accuracy, its measurements still have small 
errors on distance and angle. These measurement uncertainties can principally occur 
due to the timer counting the time-of-flight, the stability of the rotational frequency of 
the revolving unit, the surface quality and the frequency with which beams are sent out 
[Jensen04]. For the mode BIBA robot is running (8 meters and 0.5° of angular 
resolution) the documentation of the sensor [SICK00] specifies the standard deviation 
on the distance measured to 5 mm. The angular uncertainty is not specified. The 
angular values are constant and taken from a table, which makes the experimental 
determination of the angular uncertainty quite difficult. 
 

The covariance matrix that models the sensor uncertainty is given as follows: 
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where 2

ensordistance,sσ  is the uncertainty on the distance measured and 2
,sensorangleσ  is the 

angular uncertainty. The covariance matrix is diagonal, since the distance and angular 
uncertainty are assumed to be independent. 
 

Figure 2.4 illustrates an example of a scan taken in a portion of our institute-building at 
EPFL with the two laser range finders LMS200 by SICK AG mounted back to back. 

(2.5)

(b) (a) 
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Figure 2.4: Example of a scan taken with two LMS200 by SICK AG mounted back to 

back. The rectangle with the two arrows in the middle of the image represents the robot 
and the green points correspond to the data given by the laser scanner. 

 
 
2.4 Omnidirectional Camera 
 
Conventional cameras have restricted fields of view, which make them unadapted or 
unusable for certain applications in computer vision. Panoramic image sensors are 
becoming very popular because they provide a wide field of view in a single image and 
thus are eliminating the need of multiple cameras or for physically rotating a camera 
with a smaller field of view. There are three different types of systems: catoptric, 
catadioptric and dioptric. Catoptric systems make only use of mirrors for image 
formation. They contrast with catadioptric systems which employ both mirrors and 
lenses in their optics and with dioptric systems which use only lenses. Catadioptric 
systems are usually used to provide a far wider field of view than using lenses or 
mirrors alone. Therefore, in this work, a catadioptric system is adopted so as to obtain 
an omnidirectional image. It consists of a conventional CCD camera and an 
equiangular mirror. The equiangular mirror is mounted on top of the camera lens, thus 
providing an omnidirectional view of the robot’s surroundings. 
 

In this thesis, the panoramic vision system (explained here and below) is combined 
with the omnidirectional distance measurement system (see Section 2.3), in order to 
extract significant features (see Section 3) to perform localization and map building. 
 

A brief description of the equiangular mirror and of the global omnidirectional vision 
system is given below. 
 

Many types of mirror designs for omni-vision exist: spherical mirrors, ellipsoidal 
mirrors, hyperbolical mirrors and equiangular mirrors are just some examples. In this 
work an equiangular mirror is used. The main idea of these mirrors is that each pixel 
spans an equal angle irrespective of its distance from the center of the image. More 
information about this kind of mirror can be found in [Chahl97] and [Ollis99]. Our 
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Figure 2.5: Omnidirectional camera system mounted on our mobile platforms (i.e. 
BIBA robot and ”SMART” vehicle) 

 
 
omnidirectional vision system uses the ”360° One VR” mirror from EyeSee360-
Kaidan. The system uses a patented OptiFOV™ mirror (i.e. an equiangular mirror) 
[Herman02]. The panoramic vision system depicted in Figure 2.5 covers 360° degrees 
of azimuth and up to 100° degrees in elevation. 
 

The mirror-system is mounted on a structure such that when the camera is facing 
upwards, the mirror axis and the camera axis are identical. In other words, the camera 
points up through the center of the optic and captures the entire scene.  
 

Given the geometry depicted in Figure 2.6(b), the equation relating the various 
parameters shown in it (and hence characterizing the shape / configuration of the 
mirror) is given by: 
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where r  is the ray between the camera and the mirror, 0r is the distance between the 

center of the mirror axis and the center of the camera axis and θ  is the angle enclosed 
between the rays r  and 0r .  The angle of elevation is the angle of incoming light with 

respect to the vertical axis of the surface. α  is a constant and represents the elevation 
gain. It is discussed in [Herman02] that for different values of α , mirrors can be 
produced with a high or a low degree of curvature, while still maintaining their 
equiangular properties. For this design, the values of the parameters 0r and α are 14 cm 

and 11° degrees respectively.  
 

By using an equiangular mirror exact uniformity is obtained, as each pixel on the image 
covers the same solid radial angle. Thus, if moving radially in the image, the shape of 
objects is less distorted than it would be if other mirror shapes would be used.  
 
 
 

(2.6)
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Figure 2.6: Equiangular mirror: (a) The 360 One VR from EyeSee360-Kaidan. (b) 
Geometry of an equiangular mirror. (c) The camera’s axis and the mirror’s axis are 

identical and lines in the environment parallel to this axis appear as radial lines in the 
image [Hermann02]. 

 
 
Figure 2.7(a) illustrates a raw 360° degree image taken with our omnidirectional vision 
system and Figure 2.7(b) shows the unwarped 360° panoramic image. 
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Figure 2.7: (a) 360° raw image. (b) Panoramic image (unwarped image). 

 
 
 
2.5 Summary 
 
This chapter summarizes the models of the extereoceptive and proprioceptive sensors 
that are used in this work. The quality of a perception system depends more on the 
quality of the perceived data than the quantity of data obtained. Our perceptual system 
is a multi-sensory system containing both proprioceptive (wheel encoders) and 
extereoceptive (laser range finders and omnidirectional vision system) sensors. The 
odometry for a differential drive system has been described and the non-systematic 
errors have been modeled. Both extereoceptive sensors, the laser range finders and the 
panoramic vision system, provide omnidirectional data, from both distance and vision 
point of view. A catadioptric panoramic-vision system (i.e. it consists of a conventional 
camera and an equiangular mirror) is introduced in this chapter and used in this work. 
When moving radially in the image the distortion in the shape of objects is significantly 
improved, since in an equiangular mirror each pixel spans an equal angle irrespective of 
its distance from the center of the image. The actual shape of "objects" is better 
conserved by this mirror due to its main property, than by other kinds of mirrors.  
 

(a) 

(b) 
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Chapter 3 will describe in more detail, how these sensors are used; what are the 
significant features that are extracted so as to perform mapping and localization. The 
main benefit of using a multi-sensory perception approach is that the environment 
model produced is highly distinctive.  
  
 
. 
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3  

Feature Extraction and 

Environment Modeling 
 
 
3.1 Introduction 
 
With the help of sensors, the robot is able to sense its environment and take appropriate 
actions. In order to solve some of the main aspects of the robot-navigation problem, 
such as localization (estimating the position of the mobile robot or vehicle), mapping 
(creating a representation of the environment) and SLAM (Simultaneous Localization 
and Mapping) problem, some form of environment modeling is required. Different 
sensors can be used, including cameras, global positioning systems (GPS), lasers, 
sonars, radars, etc, but the main problem that must be addressed is effective 
employment raw sensory data. Usually, sensors yield an enormous amount of raw data 
and it is difficult to process it as it is. In the context of navigation, extracting 
significant, robust and stable features from sensory data is very important. This limits 
the amount of information used, and consequently the computational time required for 
processing the given information. The features extracted can vary from low-level 
features such as circles and lines to relatively high-level ones such as doors and chairs. 
Thus, the features can be categorized as belonging to different levels of abstraction, 
depicted using the pyramid shown in Figure 1.1. 
 
The laser range finder and the omnidirectional camera are the two main sensors used in 
this work. In the following sections, a description of the features that are extracted 
using them is presented. The feature extraction algorithms presented in Section 3.2 and 
in Section 3.3 are not novel as they are not meant to be contributions of this thesis. As 
mentioned before, this thesis aims at developing a new navigation system based on a 
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compact representation of the environment obtained using a methodology for encoding 
information from the environment - the fingerprint of a place. The following two 
Sections (3.2 and 3.3) contribute towards this aim. The "fingerprint of a placet" concept 
is presented in detail in Section 3.4.  
 
 
3.2 Laser Scanner Features 
 
The features extracted from the laser range finder include points, line-segments and 
infinite-lines. They have been extensively used in the context of navigation 
[Castellanos96], [Jensfelt99], [Gutmann98]. These are low-level geometrical features, 
typically employed for pure metric navigation [Arras97], [Castellanos96]. In this thesis, 
the laser scanner features will be fused with the data extracted from the omnidirectional 
camera (see Section 3.3), resulting in a compact representation of space – the 
fingerprint of a place [Tapus04b]. Such a representation is very suitable for topological 
navigation and hence employed here for the same. 
 
 
3.2.1 Horizontal Lines 

 
Extraction of horizontal lines is done using a two step process, which involves 
segmentation and fitting. In the context of this work, segmentation is the process of 
clustering points belonging to the same line (thus extracting the required line) and 
fitting refers to the procedure used to find the best line-model parameters describing the 
points under consideration, as being part of that line. Thus, the quality of the 
horizontal-line extraction procedure depends on the quality of the segmentation and 
fitting processes used. An example of a raw scan and the corresponding output, 
depicting the extracted line segments obtained using the Douglas-Peucker algorithm 
[Douglas73], is shown in Figure 3.1. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.1: (a) 360° raw scan. (b) The extracted lines as obtained using Douglas-
Peucker (DP) algorithm 

 

(a) (b) 



3.2   Laser Scanner Features  39  

 

3.2.1.1 Line Model 
 

The line model in the polar coordinates is given as follows: 
 

0sincos =−+ riyix αα  
 

where r is the length of the perpendicular to the line passing through the origin (i.e. the 
origin corresponds to the center of the robot) and α is the angle enclosed by this line 
with the x-axis, having a range given by α∈[-π,π]. Thus, the line model, in polar 
coordinates, may be expressed as the parameter set (r, α). This is depicted in  
Figure 3.2.  
 

 
 
 
 
 
 
 
 
 
 

 
Figure 3.2: The line model  

 
The polar representation is used in this work since in [Arras97] it was shown that the 
polar model (see Equation 3.1) can avoid singularity problems that are implicit in the 
Cartesian representation. 
A given point Xi belongs to the line, if its Cartesian coordinates ),( ii yx  satisfy the 
Equation (3.1). If the point Xi is given as polar coordinates ),( ii θδ , knowing the 
relationship between Euclidean and polar coordinates, we have iiix θδ cos=  and 

iiiy θδ sin= . Substituting this result in Equation (3.1) the following line model express 
in polar form is obtained: 
 

0)cos(sinsincoscos =−−=−+ riiriiii αθδαθδαθδ  

 
The covariance matrix of line parameters is: 
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3.2.1.2  Segmentation with Douglas-Peucker Algorithm 
 
Many algorithms in literature treat the problem of line extraction. They include the 
Hough Transform [Hough62], Douglas-Peucker (DP) algorithm (also known as split 
and merge algorithm) [Douglas73], [Castellanos96], RANSAC [Fischeler81], 

(3.1)

(3.2)

(3.3)
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Incremental [Siadat97], and Expectation Maximization [Pfister03]. A detailed 
description and comparison of these line extraction algorithms can be found in 
[Nguyen05]. Among these segmentation methods, the DP and Incremental methods are 
the best options for SLAM applications (one of the goals of this work), because of their 
speed and accuracy. For real-time applications, the DP algorithm is definitely the best 
algorithm as a result of its high computational speed. A description of DP algorithm is 
given below. 
 

Given a set of point P = {p0, p1,…, pn}, the Douglas-Peucker algorithm proceeds as 
follows: 

A. Recursive Split Step 
 

a. Approximate the line segment passing through the 2 extreme points 
npp0  

b. Determine the farthest point pf from the line  npp0  
c.  

i. If its distance d(pf, npp0 )≤ ε, with ε≥0, accept npp0  as a good 
line approximation for the set of point P 

 
ii. Otherwise, split the set of points pf into two groups  

{p0, p1, …, pf} and {pf, …, pn} and recursively approximate 
(perform this step – i.e. step A) for each of the sub-groups. 

 

B. Merge Step 
 

a. If two consecutive segments  jpip  and kpjp  are close enough, 

approximate the common line kpip  and determine the farthest point pcf 

from the line  kpip  

b. If its distance d(pcf, kpip ,)≤ ε, merge the segments into a single line 
segment 

 

C. Prune Short Segments 
 

D. Estimate Line Equations  
 

These steps are described in Figure 3.3. The algorithm works in a recursive manner. 
The first and the last points from the set of points P are connected by a straight line 
segment and perpendicular distances from this segment to all the other points are 
calculated. If none of these distances exceed a previously specified tolerance, then the 
straight line segment is deemed suitable to represent the set of points P. If this 
condition is not met, then the point with the greatest perpendicular offset from the 
straight line segment is selected, and the set of points P is split into two new sub-sets, 
containing respectively, all points between the first and the selected point and those 
between the selected and the last point. The procedure (known as the `split` step) is 
then repeated. The complexity of the recursive split-step is given by O(NlogN), where 
N is the number of points under consideration. When the split step is completed, there 
will be many segments. Arbitrary division of the set of points into line segments might 
result in an `excessive` split operation. The merge step, then, tries to fix this by  
considering consecutive segments that were not compared with each other during the 
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Figure 3.3: Douglas-Peucker (DP) algorithm (Split and Merge): (a) Recursive Split. 
(b) Merging 

 
split phase, and merging them if they are close enough. In order to obtain good 
repeatability and correctness, a compulsory demand that must be met when trying to do 
SLAM is that the short segments (i.e. the segments composed of few points) must be 
eliminated. To estimate the line parameters, the total-least-square method is used. This 
approach is a well known and widely used one. More details can be found in [Arras97], 
and [Jensfelt99]. 
 
 
3.3 Omnidirectional Camera Features 
 
For many reasons, vision is an interesting and attractive choice of sensory input, in the 
context of robot navigation. In addition to vision being the primary functionality used 
by humans and animals to navigate, intuitively, vision seems to be the most appropriate 
sensory input for natural everyday environments. Vision based navigation involves 
acquisition and processing of visual information. Even though it is more difficult to 
reliably extract geometric information from images (for SLAM), as compared to other 
popular sensors, vision can play a crucial role in the context of autonomous navigation. 
Visual features contain significant information (i.e. verticality, horizontality, color, 
texture, shape etc.) that can be very useful for navigation. In this thesis, the 
omnidirectional camera is used to extract vertical edges and color patches. Vertical 
edges are low-level geometric features. In contrast, color patches are more complex 
features that are intrinsically more distinctive for the environment modeling.  
 

(a)

(b)

Split Split 

Split 
No More 

Splits 

Merge 
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In the following two sub-sections, a description of the methods used to extract vertical 
edges and color patches is presented.  
 
 
3.3.1 Vertical Edges 
 
Edges characterize boundaries and are therefore of fundamental importance in real 
world environments (e.g. indoor office buildings, outdoor urban environments). Due to 
the necessity for robustness and stability when working with autonomous mobile 
robots, only features which are invariant to the effects of perspective projection must be 
used for environment modeling and later for SLAM. This will enable view-independent 
feature recognition. If the camera is mounted on a mobile robot or on an outdoor 
vehicle with its optical axis parallel to the ground plane (i.e. floor – used in this work), 
the vertical edges have the view invariance property, contrary to the horizontal ones. 
The vertical edges, extracted with the camera, permit a low-level geometrical 
description of the environment and they have been extensively used in prior work in 
vision-based localization [Ulrich00], [Lamon01]. However, vertical edges in real world 
environments, especially indoor environments, are numerous. This can result in many 
noisy ones being detected, thus leading to the formation of a faulty environment model.  
 

For this reason, the approach for edge detection adopted in this work is composed of 
the following steps: 
 

1. Filtering: used to improve the performance of an edge detector with respect to 
the noise. A mean filtering is used since it’s a simple, intuitive and easy to 
implement method of smoothing images. 

 

2. Enhancement: used to facilitate the detection of edges, by determining changes 
in the intensity in the neighborhood of a point. 

 

3. Detection: used to detect the edges by applying non-maxima suppression to a 
histogram representation. 

 
The flow chart showing the process used for vertical edge detection is illustrated in 
Figure 3.4 and a more detailed description of the different steps is given below. 

 
3.3.1.1 Edge Enhancement 
 
Many methods for edge enhancement can be found in literature. One of the most 
optimal approaches is Canny edge detector [Canny86]. The Canny algorithm is based 
on a set of criteria which include finding the most edges by minimizing the  
signal-to-noise ratio, selecting edges as closely as possible to the actual edges to 
maximize detection and extracting edges only once, when a single edge exists for 
minimal response. According to Canny, the optimal filter that meets the three criteria 
mentioned above can be efficiently approximated using the first derivative of a 
Gaussian function. 
 

One of the main problems in autonomous robotic systems is the computational time 
required for processing the algorithms performing different tasks. Image processing is 
one of the most computationally expensive processes. In order to avoid calculating the 
gradient for an interpolated point between pixels, a 3x3 convolution mask is used for 
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Figure 3.4: Flow-chart showing the different steps used for vertical edge extraction 

 

the gradient calculations in the x-direction (columns) and y-direction (rows).  For this 
operation, the Sobel operator is employed (see Figure 3.5). A convolution mask is 
usually much smaller than the actual image. The mask is slid over the image, 
manipulating a grid of 9 pixels at a time.  

The example below (see Figure 3.5) shows the mask being slid over the top left portion 
of the input image represented by the red outline. The Equation (3.4) shows how a 
particular pixel in the output image would be calculated.  

)()()()( 333332321212111122 mamamamab ×+×++×+×= Κ  

The center of the mask is placed over the pixel to be manipulated in the image.  

 

 

 

 

 

 

Figure 3.5: (a) The input image. (b) The mask that will be applied. (c) The output 
image. 

Input Image Output Image Mask

(a) (b) (c) 

(3.4)
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The actual Sobel masks, in x-direction and y-direction, respectively, are shown below: 

  

   

 

 

 
Figure 3.6: Sobel Operator in x-direction (Gx) and in y-direction (Gy) 

and the magnitude of the gradient is calculated as follows:  

22 GyGxG +=  

Since gradient computation is based on the calculation of intensity values sensitive to 
noise (due to the diode light sensitivity in the digital camera’s sensor chip), a process of 
channel mixing (i.e. red and green channels) is performed. This permits the 
amelioration of the edge detection algorithm.  
For vertical edges, only the mask along the x-direction (columns), Gx, is taken into 
account. The gradient magnitude for the vertical direction of the image described in 
Figure 3.7(a) is illustrated in Figure 3.7(b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.7: (a) A CCD color image depicting a part of our lab. (b) The corresponding 
gradient magnitude image after applying the Sobel filter on the x-direction (columns). 

Gx Gy 

(a) 

(b) 

(3.5)
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3.3.1.2 Image Histogram and Thresholding 
 
This step consists of regrouping the resulting edge fragments together so as to obtain 
segments of vertical edges. A vertical histogram of the image is constructed by adding 
the gradient magnitude of the pixels for each column. Figure 3.8(a) describes the 
histogram obtained for the image depicted in Figure 3.7(a). Significant peaks in this 
histogram correspond to meaningful clusters of vertical edges. However, the histogram 
depicted in Figure 3.8(a) is noisy.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.8: (a) The histogram of the gradient magnitude of pixels in the vertical 
direction. (b) The smoothed vertical histogram, with the mean, the threshold and the 

local maxima (red stars). 
 
A triangle filter, T =[1 2 3 2 1], is used to smoothen the histogram. It also ensures that 
the high values of the spikes are retained (see Figure 3.8(b)). 
 
In order to reduce the number of false edge fragments a threshold is applied to the 
histogram gradient magnitude values. All values below the threshold are ignored. The 
threshold is adaptable and is calculated by using a statistical approach as detailed in 
[Lamon01]. This method uses the addition between the standard deviation of the values 
of the histogram and the mean of the histogram so as to fix the threshold.  Figure 3.8(a) 
contains also the mean and the threshold values. 
 
 
3.3.1.3  Non-Maxima Suppression and Regrouping Filtering 
 
The histogram contains the gradient magnitude of pixels having the vertical direction. 
In order to identify the most probable edges, only the local maxima above the 
threshold, fixed in Section 3.3.1.2, are selected. Figure 3.9 illustrates this process and 
depicts all the extracted edges. 
 
 
 
 
 
 
 

(a) (b)
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Figure 3.9: The original image with the extracted vertical edges, corresponding to the 

local maxima 
 
Since the extraction of vertical edges must be robust and stable for a later use in  
Section 3.4, the sensitivity to occlusion and noise must be limited. A regrouping filter 
is applied on the histogram obtained after the thresholding process. This enables the 
grouping of edges closer than a fixed constant value which represents the minimum 
distance between the edges. The final set of extracted vertical edges is shown in  
Figure 3.10. 
 
 
 
 
 
 
 
 
 
 

Figure 3.10: The original image with the extracted vertical edges after applying the 
regrouping filter 

 
 
3.3.2 Color Patches 
 
Another important feature that can be extracted from the camera sensor is color. It may 
be one of the most natural features used by humans for visual recognition and 
discrimination and it is context dependent. It is an intuitive feature that can give an 
effective and compact representation by itself. Computer vision performs color 
extraction without the benefit of a context. Lack of knowledge also makes it difficult to 
distinguish true color information from color distortion. The appearance of the color of 
real world objects is generally altered by surface texture, lighting, shading effects, and 
viewing conditions. 
 

In our work, we are interested in identifying the regions within images that contain 
colors from a predetermined color set. The fixed color set is illustrated in Figure 3.11.  
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Figure 3.11: The predetermined color set - 8 colors (hue∈ [0,255]). The characters A 

to O indicate the hue of colors (A=red, C=yellow, E=light green, G= dark green, 
I=light blue, K=dark blue, M=violet, O=magenta) 

 
 
We choose to work with a set of eight color bins, which is a good tradeoff (i.e. a 
number too small would not have exploited all the colorimetric information and a 
number too big of color patches would have resulted in a high computational process 
time). A similar approach for color patch extraction is also described in [Lamon01]. 
 
 
3.3.2.1   Color Spaces 

 
The RGB (i.e. a superposition of red, green and blue colors) color format is the most 
common color format for digital images, because it is compatible with computer 
displays. However, the RGB space has a major shortcoming in that it is not 
perceptually uniform (i.e. there is a low correlation between the perceived difference of 
two colors and the Euclidian distance in the RGB space). In contrast, other color spaces 
that offer improved perceptual uniformity, such as CIE-LAB and CIE-LUV can be 
used. In general, they represent with equal emphasis, the three color variants that 
characterize color - hue, lightness, and saturation. The hue channel calculates the 
apparent color of the light, as determined by the dominant wavelengths, the saturation 
is a term used to specify the purity of the light and the intensity represents the total light 
across all frequencies. This separation is attractive because color image processing 
performed independently on the color channels does not introduce false colors and it is 
easier to compensate color distortions. For example, lighting and shading distortions 
will typically be isolated to the lightness channel. Therefore, for color extraction we use 
the HSI (Hue, Saturation and Intensity) color space because it has the above mentioned 
characteristics. More details on RGB to HSI color space conversion can be found in 
[Jain95]. 
 
 
3.3.2.2             Saturation Thresholding 
 
Saturation is an important element in the HSI color space and it defines the purity of 
color. As saturation increases, colors appear more "pure." As saturation decreases, 
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colors appear more "washed-out." The high values of the saturation are usually 
obtained after the color space conversion (RGB to HSI) when there is a great difference 
between RGB values and not only because the color is truly saturated. For this reason 
the pixels with very high and very low saturation values are ignored and will not be 
taken into account for the rest of the color bin detection algorithm (see Figure 3.12) 
 
 
 
 
 
 
 
 

 
 

   
 
 
 
 

Figure 3.12: (a) The input image composed of 5 golf balls of different colors. 
(b) Saturation image after the thresholding process (the saturation values are in 

between 100 and 250) 
 
 

3.3.2.3             Hue Histogram 

The color distribution in the scene is in general not known in advance and can cover the 
entire color space. One common method for characterizing image color is to use a hue 
histogram. The hue histogram for each base color depicted in Figure 3.11 is constructed 
by counting the number of pixels of each color. Only the pixels that passed the 
thresholding saturation process are taken into account. Each of these pixels will vote in 
one or two histograms depending on the value of the hue (e.g. a pixel with hue=0 will 
add 100 in the corresponding column of the red histogram, and a pixel with hue=7 will 
add a bigger column in the red histogram than in the yellow one). A description of this 
voting process can be viewed in Figure 3.13.   

 

 

 

 

 

 
Figure 3.13: Fuzzy voting process 

(a) 

(b) 
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(a) (b) 

For histogram peak detection, the same methodology as the one described in  
Section 3.3.1.2 for vertical edge detection is also used here. Some parameters are 
adapted for the case of color patches. Therefore, instead of using a triangular filter, a 
trapezoidal filter T2=[1 2 2 2 1] will be employed, because we want to smoothen out 
thin peaks in this case.   

The Figure 3.14 shows the histograms generated with our method for the image shown 
in Figure 3.12(a). 

 

 

 

 

 

 

 
Figure 3.14: Color Histogram. (a) Red color histogram (′A′); (b) Yellow color 

histogram (′C′) 
 
 

3.3.2.4             Color Fusion 
 
Figure 3.15(a) shows that the number of color patches detected in Figure 3.12(a) is 
higher than the number of color patches expected. This means that some golf balls 
voted in two different color histograms. This phenomenon can be noticed in  
Figure 3.14, when the second golf ball voted both in the red and in the yellow 
histogram. The process of keeping both detected color patches is very critical for 
environmental modeling (i.e. an inversion between patches can occur, and hence the 
representation of the environment can appear different). For this reason, we choose to 
fuse two consecutive color patches that have a difference between their patch 
coordinates smaller than a user predefined threshold. In this example (see  
Figure 3.14), the red patch and the yellow patch are fused and a new patch is thus 
obtained, the orange patch, denoted by the character ′B′. 
 

Figure 3.15(b) illustrates the sequence of color patches detected after the color fusion 
performed Figure 3.15(a). It can be seen that the sequence of colors obtained in  
Figure 3.15(b) matches exactly to the input image as depicted in Figure 3.12(a). 
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Figure 3.15: (a) Color patches detected; (b) Color fusion 

 
 

3.4 Environment Modeling with Fingerprint of Places 
 
Most of the time, with the exception of reactive-behavior based navigation a space 
representation of the environment is needed in order to localize the robot. The notion of 
the fingerprint of a place is introduced here. This concept was first proposed in 
[Arras97] and [Lamon01]. The fingerprint approach, by combining the information 
from all sensors available to the robot, reduces perceptual aliasing and improves the 
distinctiveness of places. This manner to represent the environment is defined and 
described in the followings sub-sections. 
 
 
3.4.1 Fingerprint of a Place Definition 
 
Just as each person has a unique fingerprint, each location in the environment also has a 
unique set of characteristics associated with it. Of course, when relying on the limited 
perceptual capabilities of a machine, it is difficult to guarantee the unique distinction 
between two similar places. Our system assumes that a fingerprint of the current 
location can be created and that the sequence generation methods can be made 
insensitive to small changes in robot position. However, this characterization of the 
environment is especially interesting when used within a topological framework. In this 
case the distinctiveness of the observed location plays an important role for reliable 
localization and consistent mapping.  
A fingerprint of a place is a circular list of features, where the ordering of the set 
matches the relative ordering of the features around the robot. We denote the fingerprint 
sequence using a list of characters, where each character represents an instance of a 
specific feature type. Figure 3.16 depicts an example of a fingerprint of a place.  
 

 
 
 

Figure 3.16: Fingerprint concept overview 
 
 

Fingerprint 

 R      c     G    d     Y       c      B 

(a) 

K A C G A C K B G A C
(b)
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3.4.2 Fingerprint Encoding 
 
As previously mentioned, a fingerprint of a place is a circular list of features that the 
robot can perceive around it. In this thesis a fingerprint is created by assuming that a set 
of feature extractors (as described in the previous sub-sections) can identify significant 
features in the environment around the robot. Omnidirectional sensors are preferred 
because the orientation as well as the position of the robot may not be known a priori. 
In this work, we choose to extract color patches and vertical edges from visual 
information and corners (i.e. extremity of line-segments) from laser scanner. The letter 
′v′ is used to characterize an edge, the letters ′A′,′B′,′C′,...,′P′ to represent hue bins and 
the letter ′c′ to characterize a corner feature (i.e. in this work, a corner feature is define 
as the extremity of a line-segment extracted with the Douglas-Peucker algorithm). 
Details about the extraction of visual features can be found in Section 3.3 and that of 
features extracted using laser scanner in Section 3.2.  
 
 
3.4.3 Fingerprint Generation 

 
Fingerprint generation is performed in three steps, as shown in Figure 3.17. The 

extraction of the different features (e.g. vertical edges, corners, color patches) from the 
sensors is the first step of the fingerprint generation process. The extracted features are 
ordered in a sequence depending on their angular position (0…360°). In the second step, 
a new type of feature, the virtual feature ′f′ is introduced. This reflects the 
correspondence between a corner (detected with the laser scanner) and an edge (detected 
in the unwrapped omnidirectional image). In order to represent large (> 20° degrees, in 
our case) angular distances between successive fingerprint elements, the notion of an 
′empty space′ feature is added. This is denoted in the fingerprint sequence by the 
character ′n′. In this way, the ordering of the features in a fingerprint sequence becomes 
highly informative, thereby increasing distinctiveness of fingerprints. This insertion is 
the last step of the fingerprint generation process.  
 

 
3.4.4 Uncertainty Modeling in the Fingerprint 
 
The interaction between a mobile robot and its surroundings is performed by means of 
extereoceptive sensor data. Sensors are imperfect devices, and thus the measurements 
always contain errors. This can be modeled by associating uncertainty to their data. For 
this reason, probabilities will be used to model the uncertainty of the geometric features 
extracted from the environment. We define the uncertainty as the probability of a feature 
of being present in the environment when the robot perceives it. In our fingerprint 
approach, this idea is incorporated by associating every observed feature (for each of the 
different types of features mentioned above) with an uncertainty measure. These 
uncertainty measures are modeled by experience, for each type of feature presented in 
Figure 3.17: vertical edges, colors, corners (extremities of the segments), ′f′ feature and 
respectively ′n′ feature. 
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Figure 3.17:  Fingerprint generation. (a) panoramic image with the vertical edges and 
color patches detected, denoted by ′v′ and ′A′…′P′, respectively ; (b) laser scan with 
extracted corners ′c′; (c) the first three images depict the position (0 to 360°) of the  
colors (I-light blue, B- orange and E-light green), vertical edges and corners,  
respectively. The forth image describes the correspondence between the vertical edge 
features and the corner features. By regrouping all these results together and by adding 
the empty space features, the final fingerprint is:  cIfvnvcvfnvvncvnncvBnvBccE 
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The method used to associate each feature with an uncertainty measure is explained 
below:  
 

• For the first three types of features (vertical edges, colors and corners) the 
uncertainty is calculated by using the following scheme. 
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The extraction_value variable changes in function of the type of the feature. For 
the vertical edges, extraction_value corresponds to the gradient value. For the 
colors, the extraction_value is represented by the hue value of the color. In the 
case of the corner features, the extraction_value is identified as the distance 
between the robot and the extremities of the segments. The values of the 
low_bound and high_bound are experimentally determined for each type of 
feature. The value of low_bound represents the bound below which the feature 
has a low probability of existence so that the robot may not see it when it passes 
it again. Another important element is the high_bound, above which a feature 
has a high certainty to exist and to be in the place where it was found (extracted). 
The low_bound and the high_bound are determined for each feature at the 
extraction level. The extraction of the vertical edges consists of the application 
of a threshold function on the gradient values. Since all edges below the 
threshold are ignored, low_bound is used as the threshold value. The value 
high_bound must be high, but not max_gradient, so it has been fixed 
experimentally at (threshold + mean_gradient). To extract the colors, a 
threshold function on the hue values has been applied and a similar method to 
that applied for the vertical edges has been chosen. Two other important 
elements in the formulation described before are the values of min and max, 
which are fixed to 0.6, respectively 0.99. Values between the min and max 
values may be computed by linear interpolation, as given below: 
 

)( minmax
low_boundhigh_bound

low_bound_valueextractionmin u −×
−
−

+=  

 
• As the ′f′ feature reflects the correspondence between a corner and an edge, its 

uncertainty is defined as the mean value between the uncertainty of the corner 
and the uncertainty of the vertical edge feature. 

 

• The last feature is the ′n′ feature (i.e. the empty space feature that represents the 
angular distance between the features). The uncertainty of this feature is defined 
as being proportional to the distance between the features.  

 

In this way, the uncertainty of the features used in the fingerprints is calculated. The 
limitation of this method resides in the models, which are difficult to define, especially 
for our definition of uncertainty, which cannot be directly derived from the physical 
characteristics of the sensors. 
 
 
 

(3.6)

(3.7)
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3.5 Summary 
 
This chapter presented different methods for feature extraction and the way these 
features are combined into a compact representation, the fingerprint of a place. This 
environment model is the basis of our navigation system and will be used in the next 
chapters for localization, mapping and SLAM. Features from both the laser range finder 
(i.e. the horizontal edges) and the omnidirectional camera (i.e. the vertical edges and 
the color patches) have been extracted and will be used for space representation. The 
fingerprint provides a compact and distinctive methodology for space representation – 
it permits encoding of a huge amount of place-related information in a single circular 
sequence of features. In this work, low-level features (such as vertical edges, horizontal 
lines) are used. Other modalities and sensory cues can also be added to the fingerprint 
framework (e.g. auditory, smell, or higher level features such as doors, table, fridge) 
and thereby improve the reliability and accuracy of the method. This representation is 
suitable for both indoor and outdoor environments. The fingerprint-based environment 
modeling is extensible in that it permits spatial cognition beyond just pure navigation. 
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4  

Topological Localization with 

Fingerprints of Places 
 
Navigation poses several challenges - one of the key issues when talking about 
navigation is answering the question “Where am I?” (also known as the localization 
problem). The robot localization issue is a very important problem in the development 
of truly autonomous robots. Localization is the task of determining robot’s position 
with respect to some underlying representation. This representation is map situation-
based and may comprise of anything - constellations of stars, a network of GPS 
satellites or even a simple map of an indoor (typical household/office) environment. If a 
robot does not know where it is relative to its environment, it is difficult for it to decide 
what to do next. For many roboticists, the problem of robot localization has been the 
most fundamental problem in the development of truly autonomous robots. There are 
many methods to answer this question, each having a different precision (i.e. metric and 
topological, more details are given in Section 1.2). This chapter looks at how the 
question “Where am I?” can be answered, given that a topological representation of the 
environment is used in conjunction with probabilistic techniques (to model the 
uncertainty in the environment). 
 
 
4.1 Related Work 
 
Finding an efficient solution to the robot localization problem will have a tremendous 
impact on the manner in which robots are integrated into our daily lives. Most tasks for 
which robots are well suited demand a high degree of robustness in their localizing 
capabilities before they are actually applied in real-life scenario’s.  
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Since localization is a fundamental problem in mobile robotics, many methods have 
been developed and discussed in literature. These approaches can be broadly classified 
into three major types: metric, topological and hybrid. Approaches using metric maps 
are useful when it is necessary for the robot to know its location accurately in terms of 
metric coordinates (i.e. Cartesian coordinates). However, the state of the robot can also 
be represented in a more qualitative manner, by using a topological map (i.e. adjacency 
graph representation). Thus, the problem of localizing a robot given a topological map 
is equivalent to determining the node in the graph that corresponds to the robot’s 
current location. Recently, researchers have integrated both the metric and topological 
paradigms, thereby obtaining a hybrid representation.  

 

Most of the mobile robot localization approaches focus on metric localization. Metric 
localization approaches can be based on either model-matching or on landmarks. Most 
of the model-matching based methods use an Extended Kalman Filter (EKF) that 
combines the extereoceptive and proprioceptive information from sensors so as to 
determine the current position of the robot [Arras00], [Jensfelt99], [Perez99]. These 
systems need a good statistical sensor model; the uncertainties (of the recorded sensor 
data) they yield, will be provided to the Kalman filter. Recent advances in Kalman 
filtering permit for non-Gaussian multimodal probability distributions through multiple 
hypothesis tracking. Markov localization and Monte Carlo localization are two of them. 
Markov localization [Fox98] is well suited for globally estimating the position of a 
mobile robot based on its observations and its actions and has the ability to relocalize a 
robot if its position is lost. Monte Carlo localization (localization using particle filters) 
yields a method of representing multimodal distributions for position estimation. This 
concept has been demonstrated in [Dellaert99] and [Thrun01]. These works also take 
advantage of the fact that the computational time required, is independent of the area 
within which localization has to be performed.  

 

Landmark based localization can use two types of landmarks: ”artificial” and ”natural”. 
Natural landmarks are features that are already present in the environment and 
may/may not have other totally distinct roles, as against their utility for robot 
navigation. Artificial landmarks are features (such as beacons, color signs, RFID’s, etc) 
placed in the environment specifically for the purpose of robot navigation. Therefore, 
artificial landmarks are much easier to reliably detect (they can be chosen 
appropriately) than natural landmarks. The usage of artificial landmarks requires the 
modification of the environment within which the robot will move and hence the 
natural landmarks are preferred. Typically used examples of natural landmarks include: 
corners [Tomatis03], doors [Althaus03], ceilings [Abe99]. One of the main drawbacks 
of the existing landmark-based localization approaches is the fact that they are made for 
specific environments, they are thus not generic and cannot be used as is for different 
types of environments (i.e. both indoor and outdoor).  

 

Topological approaches attempt to overcome the drawbacks of geometric methods by 
modeling space using graphs. Significant progress has been made since the seminal 
paper by Kuipers [Kuipers78]. Next, a brief description of several topological methods 
to perform place recognition is presented. Kortenkamp and Weymouth in 
[Kortenkamp94] have proposed an approach based on concepts derived from a theory 
of human cognitive mapping that also involved topological navigation. They have used 
the data from the sonars combined with vision information in order to achieve a rich 
sensory place characterization. Their work is an amelioration of Mataric’s approach in 
[Mataric90]. The main goal of their work was the reduction of the perceptual aliasing 
problem, the improvement obtained by introducing more sensory information for place 
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representation. A model by Franz, Schölkopf and Mallot [Franz98] was designed to 
explore open environments within a maze-like structure and to build graph-like 
representations. Their method has been tested on a real robot equipped with an omni-
directional camera. Place recognition was done by comparing the current observation to 
the stored omni-directional snapshots. The model described in [Choset01] represents 
the environment with the help of a generalized Voronoi graph (GVG) and localizes the 
robot via a graph matching process. In [Ulrich00], Ulrich and Nourbakhsh present an 
appearance-based system for topological localization. An omnidirectional camera was 
used. Furthermore, Tomatis et al. have conceived a hybrid representation of the 
environment [Tomatis03]. This comprises local metric maps interconnected via 
topological relations. Their system uses a camera and two laser range finders to 
perform the recognition of doors and corners.  

 

This chapter presents several topological localization techniques based on the 
fingerprint approach. In contrast to most of the previously presented methods, our 
fingerprint-based methods combine multimodal perceptual information and perform 
well both in indoor and outdoor environments. The algorithms presented in this chapter 
operate on a graph-like representation of the world. These approaches have also been 
illustrated in depth in the works [Tapus04a] and [Tapus04b].  
 
 
4.2 Environment Model 
 
The environmental model used, plays a very important role for determining the 
precision and for performing the localization. In this work, it was chosen to represent 
the environment in a topological fashion. The topological map can be viewed as a 
graph of places, where at each node the information concerning the visible landmarks 
and the way to reach other places connected to it, is stored. The fingerprint of a place, a 
circular list of features around the robot, described in Section 3.4, can be easily used to 
represent places and therefore the nodes in the topological framework. Thus, the 
topological representation is compact and allows high level symbolic reasoning for map 
building and navigation.  
 
 
4.3 Localization with Fingerprints of Places 
 
Localization is the task by which, given a map, an active agent determines its current 
location with respect to the map. As mentioned earlier, in this work, fingerprints of 
places are used (as representations of the environment) to build an environment model. 
This model is subsequently used to localize the robot. Localization on a fingerprint-
based representation is reduced to a problem of fingerprint matching.  
 
 
 
 
 

 
 

Figure 4.1: General procedure for fingerprint-based localization 
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The next sections illustrate different localization methods using fingerprints of places, 
the results obtained and a comparison between them. Figure 4.1 depicts the general 
procedure used for fingerprint-based localization. 
 
 
4.3.1 Fingerprint Matching using Bayesian Programming 

 
This section presents a Bayesian localization algorithm for a topological (fingerprint 
based) environment model. The approach also describes how multimodal perception 
increases the reliability of topological localization (using the Bayesian Programming 
formalism) for mobile robots.  
 
 
4.3.1.1 Bayesian Programming (BP) Formalism 

 
When programming a robot, the programmer constructs an abstract representation of 
the robot’s environment. This representation may be geometrical, analytical or 
symbolic in nature. In a way, the programmer imposes upon the robot, his or her own 
abstract conception of the environment. Difficulties appear when the robot needs to link 
this representation with the sensory input and use the same to send output signals to its 
actuators. The underlying cause for all of these problems lies in the irreducible 
incompleteness of the model. Controlling the environment is the usual answer to these 
problems. However, this is not a desirable solution as the robot may be expected to 
function in environments not specifically designed for it, populated environments or 
even under situations with unexpected events occurring. 
  

Probabilistic methodologies and techniques offer possible solutions to the 
incompleteness and uncertainty problems encountered when programming a robot. The 
basic programming resources are probability distributions. 
  

The Bayesian Programming (BP) approach was originally proposed as a tool for robot 
programming (see [Lebeltel04]), but nowadays it is used in a wider range of 
applications ([Mekhnacha00] shows some examples).  
 

In this approach, a probability distribution is associated with the uncertainty of a logical 
proposition value. The usual notion of a Logical Proposition (true or false) and its 
operators (conjunction, disjunction and negation) are used to define a Discrete 
Variable. A Discrete Variable X is a set of logical propositions xi, such that these 
propositions are mutually exclusive (i.e. for all i,j with i≠j,  xi∧xj is false) and 
exhaustive (at least one of these propositions xi is true).  
 

The probability distributions assigned to logical propositions are always defined 
according to some preliminary knowledge, denoted by π. The probability P(xi⎟π)  gives 
the probability distribution of the variable X having the value xi, knowing π. 
Probabilities will be manipulated using the Bayes rule. More details about the inference 
postulates and rules for carrying out probabilistic reasoning in this context can be found 
in [Bessière03] and [Bellot03].  
 

The Bayesian Programming formalism enables the usage of a uniform notation and 
provides a structure to describe probabilistic knowledge and its use. The elements of a 
Bayesian Program are illustrated in Figure 4.2. A BP is divided in two parts: a 
description and a question.  
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Figure 4.2: Structure of a Bayesian Program (see [Bessière03]) 
 
 
A.  Description 
 
The purpose of a description is to specify an effective method to compute a joint 
distribution on a set of relevant variables {X1,X2,…,Xn}, given a set of experimental data 
δ and a priori knowledge π.  
 

In the specification phase of the description, it is necessary to: 
 

• Define a set of relevant variables {X1,X2,…,Xn}, on which the joint distribution 
shall be defined; 

 

• Decompose the joint distribution into simpler terms, using the conjunction rule. 
The conditional independence rule can allow for further simplification, and such 
a simplified decomposition of the joint distribution is called decomposition. 

 

• Define the forms for each term in the decomposition; i.e. each term is associated 
with either a parametric form (a function) or another Bayesian Program. 

 
B.  Question 

 
Given a description P(X1,X2,…,Xn │ δ π), a question is obtained by partitioning the 
variables {X1,X2,…,Xn} into three sets: Searched, Known and Unknown variables. A 
question is defined as the distribution P(Searched │ Known δ π ). In order to answer 
this question, the following general inference is used: 
 

∑

∑
=

SearchedUnknown knownKnownSearchedUnP
Unknown knownKnownSearchedUnP

KnownSearchedP
, )(

)(
)( δπ  

 
Depending on the number of variables (and its discreteness) and the decomposition 
choice, this calculation may need a lot of computational time and turn out to be 
infeasible. Numerous techniques have already been proposed to achieve an admissible 
computation time. A brief summary of the approximative approaches used for reducing 
calculation time can be found in [Mekhnacha00]. In [Bessière03], one of these 
approximative methods is described in detail. 
 
 
 

(4.1)
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Figure 4.3: Bayesian Programming and other probabilistic approaches  
(see [Diard03]) 

 
 

C. Bayesian Programs and Other Probabilistic Approaches 
 

Bayesian Programs have been shown to be a generalization of most of the other 
probabilistic approaches [Diard03], as shown in Figure 4.3. It means that all these 
probabilistic approaches may be reformulated using the Bayesian Programming 
formalism and thus easily compared with one another. For instance, Bayesian Networks 
correspond to a description where one and only one variable may appear to the left of 
each probability distribution appearing in the decomposition. This restriction enables 
optimized inference algorithms for certain class of questions.  
 

A more detailed description can be found in Appendix A. 
 
 
4.3.1.2  Bayesian Program for Localization 
 
The Bayesian approach to localization with the fingerprints of places, presented here, is 
composed of two steps. The first step is the phase of supervised learning where the 
robot inspects several locations, denoted by Loc. From each location loc∈Loc the robot 
extracts the fingerprint data, as explained in Section 3.4 and stores it along with the 
name of the location in a database, denoted by the symbol δ . The second step is the 
phase of application, when the robot localizes itself in the environment. To answer the 
question “Where am I?” the robot will extract the features composing the fingerprint of 
a place of its surroundings: the set of vertical edges VE , the set of color patches CP , 
and the set of corners C , and solve the question corresponding to probabilistic robot 
localization given as: 
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) CP  (maxarg* πδVEClocP
Locloc

loc
∈

=  

 
This means that if fingerprints of places are associated to each location, then the actual 
location of the robot may be recovered by comparing the features composing the 
fingerprint of a place: the set of vertical edges VE , the set of color patches CP , and the 
set of corners C  with the database of known locations.  The location loc* which 
maximizes the probability measure is chosen. The preliminary knowledge is summed 
up by π . In the following it is shown how ) CP  ( πδVEClocP  can be solved by the 
Bayesian Programming technique. 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Bayesian Program for robot localization given a fingerprint based 
topological map 

 
Figure 4.4 illustrates the Bayesian Program used for the Bayesian fingerprint matching. 
Several features are used in the fingerprints of places. These are denoted by: VE the set 
of vertical edges and CP the set of color patches extracted by the omnidirectional 
camera and C the set of corners (i.e. the line-segment extremities) extracted from the 
data given by the laser scanner. The variables VE, CP and C are independent of one 
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another, but they are location-dependent and it is these dependencies that give rise to 
the Bayesian Program formulation shown in Figure 4.4.  
The decomposition (see Bayesian Program) described above involves three different 
kinds of probability distributions:  
 

• Since no a priori information about locations is available, it is considered 
that each location is equally probable and consequently the probability of a 
location given all the prior knowledge is expressed as a uniform distribution.  

 

• To determine the probability of one feature f, where  
f ∈ {VE, CP, C}, given the location and all the a priori knowledge, this 
probability is given as the likelihood of the new feature data f with respect to 
the distribution of the same feature as encountered at the given location 
during the learning phase. This distribution is calculated as a mixture of 
Gaussians (MOG) in angle space, optimizing the mixture parameters by 
making use of the Expectation Maximization (EM) algorithm. More details 
about these two concepts are described in the next three sub-sections.  

 
The two equations from the Parametric Forms will solve the basic question described in 
the Bayesian Program (see Figure 4.4).  
 
 
4.3.1.3 Mixture of Gaussians 
 
Mixture of Gaussians (MOG) is a widely used approach when estimating the 
distribution of data. A MOG in the parameters θ is a probability density function, which 
results from combining k Gaussian probability density functions in a weighted sum: 
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where wi is the weight,  μi and σi the mean and the standard deviation of the ith mixture 
component, which itself is a Gaussian probability density function given by the 
formula: 
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The normalization factor η turns the Gaussian function into a probability distribution 
function by guaranteeing that the integral over the function evaluates to 1: 
 

∫ =1)( ixP θ  

 
In angle space, η is the inverse of the integral from -π to π over the un-normalized 
Gaussian function of: 

(4.3)

(4.4)

(4.5)

(4.6)
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where erf(x) is the error function  
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Since  pMOG is also a probability density function, the weights wi must sum to 1, such 
that the integral over the distribution is 1: 
 

∑ = 1iw  

∫ =1)( ixMOGP θ  

 
The parameters of the complete MOG are then 
 

}...1,...1,...1{}...1{ nnnwwnMOG σσμμθθθ ==  
 
The MOG is a compromise between the efficient but parametric models on one side, 
and the flexible but expensive non-parametric methods like histograms or kernel 
methods on the other side. 
 
 
4.3.1.4 Expectation Maximization 
 
Finding the optimal parameters θMOG of a Mixture of Gaussians (MOG) over a set of 
data points X is not trivial. A widely used approach to solve this problem is the 
Expectation Maximization (EM) algorithm [Bilmes97].  
 

This algorithm starts with an initial estimate of the parameters θ  and improves upon 
them iteratively. The algorithm proceeds in two steps: 
 
E- step: Calculates the complete data likelihood given the known data X  and the 

current parameters θ . 
 
M- step: Calculates the new parameters θnew which maximize the joint probability 

),( θYXP , where Y  is the hidden data, which in our case is the knowledge 
about the probability that the ith data point ix was generated by the kth mixture 
component. 

 
The ‘improvement‘ is defined in the sense that the log-likelihood of the data X increases 
with respect to the new parameters θnew. In the case of mixtures of Gaussians, it is 

(4.7)
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(4.9)
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possible to derive the new parameters θ new analytically. The resulting formulas merge 
the E- and M- step and are given by: 
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where N is the number of data points: N = |X| and distAS(a, b) the distance function in 
angle space. It takes two angles a, b and returns the shortest way to go from a to b. The 
sign of the distance is positive if going clockwise, and negative if going counter 
clockwise. The iteration is typically terminated when the increase of the log-likelihood 
falls below some threshold value ε.  
 
 
4.3.1.5 Example 

This part shows a simple example of localization, when only the vertical edges are used 
and thus the probability )  ( πδlocVEfP =  is illustrated through an example. A set of 
13 occurrences of vertical edges is chosen and the MOG for it are calculated. A second 
set of data is generated, this time with 18 occurrences, and the probability 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
Figure 4.5: Evaluation of P(f=VE│loc πδ) for the original data set 
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Figure 4.6: Evaluation of P(f=VE│loc πδ) for the some other data set, resulting in a 
smaller value above, since the MOG is not optimal for this data. 

 

)  ( πδlocVEfP =  for both datasets with the same MOG parameters (see Figure 4.5 
and Figure 4.6) is evaluated. As expected, the resulting value is for the first data set 
significantly higher than for the second, since the parameters of the MOG were chosen 
to maximize the first set.  

Note how flexible this method is with respect to the number of features per set: A 
MOG can be generated from a set of any number of features, and it can be evaluated 
later for samples of arbitrary length. 
 
 
4.3.1.6 Experimental Results 
 
This approach is firstly tested in simulation on a variety of synthetic office 
environments, where it is easier to run extensive experiments. These results are 
thereafter confirmed by running experiments in a real office environment with a robot 
(see Figure 4.8).  
 
 
4.3.1.6.1 Simulation Experiments 

 
For ten synthetic office environments, four observations of each feature f∈{VE, CP, C} 
were randomly generated, such that the four generations were similar but not identical. 
The four observations of a feature in a certain place were disturbed by the addition of a 
small random distance noise, with a standard deviation of five degrees. After the 
generation of the dataset, a MOG of k components was calculated for the combination of 
the four observations of each place. With these ten MOGs the 40 observations were 
classified, by calculating the likelihood of the angular feature according to the MOG. For 

angular feature 

position [rad] 
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a given observation, the classification is successful, if the highest value of the MOG 
corresponds to the correct place.  
 

The simulation results for all the combination of k, with k ∈{3, 4, 5} and N (the number 
of occurrences of a feature f, in our case f = VE) with N∈{5, 10, 15, 20, 25, 30, 35}, is 
described in the following table (see Table 4.1). 
 

TABLE 4.1: The table shows the results of a simulation with different parameters for 
the number k MOG components and N, the number of observations of a feature.  

 
 

 
 
 
 
 
 
A graphical description of these results (i.e. for the vertical edge feature; for 25 and 30 
occurrences of the same) for all the possible combination of k (number of mixture 
components) is illustrated in Figure 4.7(a) and (b) respectively. The graphs depict the 
rate and the rank obtained. The rate signifies the percentage of successful classifications 
as a function of the different number of mixture components. In the case of a correct 
match, the rank is set to 1. If the evaluation with other MOG’s parameters than the 
expected one gave a higher value, the rank of the sample is  
2, 3, 4, …, etc, depending on how many values were better than the expected one.  
Figure 4.7(a) and (b) shows that for kMOG = 3 very good results are obtained with a 
percentage of successful classification in between 81.5% and 99.5%. By increasing the 
number of MOG components the results are improved. For kMOG = 5, the results give a 
percentage comprise in between 98.5% and 100%. It is clearly visible, that with more 
feature occurrences per sample, both rank and rate yield better results. 
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Figure 4.7: (a) Results of the experiments with NVE =25 for different numbers (k) of 
mixture of Gaussians (MOG) components. kMOG = 3 gives already very good results. 

The best values are obtained for kMOG = 5. (b) Results of the experiments with NVE =30 
for different numbers (k) of mixture of Gaussians (MOG) components. kMOG = 3 gives 

already very good results. The best values are obtained for kMOG = 5. 

 

(b) 

(a) 
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For the f∈{CP, C} the process was similar to the shown one. The simulation results are 
significant and after the combination of all elements it was noted that: 
a. With the increase of the MOG components one sees an improvement of the 
results.   
 

b. With the increase of the number of observations N of a feature one sees an 
improvement of the results  

 
 

4.3.1.6.2 Experiments with the robots 
 

In order to verify the simulation results, these experiments were repeated on a real 
robot. The approach has been tested in a 50 x 25 m2 portion of our institute shown in 
Figure 4.8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8: The test environment. The arrows indicate the rooms in which the 
experimentation has been done. The tenth room is not represented in the image. 

 
 
The test setup was the following: The robot extracted the three features (i.e. vertical 
edges, color patches and corners) in ten offices ten times. Eight times it was placed on a 
circle of 40 cm to 70 cm of radius (so that the places will be slightly different), yielding 
the training data, and two times inside the same circle, yielding the test data. The mean 
number of feature occurrences in each measurement is summarized in the following 
table: 
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 TABLE 4.2: The table shows the mean number of occurrences of instances of the 
same feature type during the measurements. 

 
 
 
 
 
 
During all measurements, the orientation of the robot was approximately the same. This 
simplification could be omitted by letting the robot estimate its orientation by 
considering all rotations of the fingerprint string. In order to complete the training, for 
each location and each feature type the mixture of Gaussian was calculated. In the 
application phase, the classification of the 20 test samples was used to answer the 
following questions: 
 

1. What is the significance of each feature type using the MOG approach? 
 

2. How does the combination of several feature types improve the MOG 
approach? 

 
Since the number of occurrences of the color patch feature was too small to give 
significant results, it was omitted for the MOG calculations. kMOG signifies the number 
of mixture components used for the mixture (Table 4.3). 
 

 TABLE 4.3:  Results using single features only (vertical edge, corners) and the 
combination of these features. 

 
The success of a room classification is defined as the detection of the highest 
probability. Successful classification was produced 66.7% of the time, as observed 
from Table 4.3. The method seems promising, but the percentage of successful matches 
(i.e. 66.7%) can’t be considered sufficient for robot localization.  
 
 
4.3.2 Fingerprint Matching with Global Alignment Algorithm 
 
Since the results of the previously presented method were not very satisfying (only 
66.7% of successful classification), another alternative approach is proposed here. 
 

Fingerprints of places are represented as a sequence of characters and therefore the 
localization is reduced to a string-matching problem. String matching is not a trivial 
problem. Usually strings do not match exactly because the robot may not be exactly 
located on a map point and/or some changes in the environment or perceptual errors 
may have occurred. Many string-matching algorithms can be found in the literature but 
they generally require the strings to have the same length. Some of them allow a level 
of mismatch, such as the “k-mismatch“ matching algorithms and string matching with k 

 mean occurrences 
vertical edge 5.6 

corner 5.6 
color patch 2.7 

 kMOG = 3 kMOG = 4 kMOG = 5 
vertical edge 42.1% 2.58 44.1% 2.47 55.6% 1.82 

corners 55.6% 1.65 51.1% 1.71 47.1% 1.71 
ve & c 58.8% 2.00 66.7% 1.82 66.7% 1.67 
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differences [Aho90], [Baeza-Yates99]. The first allows matches where up to k 
characters in the pattern do not match the text and the second requires that the pattern 
have an edit distance† of the text of k or less elements. One of the main problems of the 
above methods is that they do not consider the nature of the features and the specific 
nature of the mismatch that occurred.  
 

The likelihood of specific types of mismatch errors has to be taken into account. For 
instance confusing a red patch with a blue patch is more egregious than confusing the 
red patch with a yellow patch. The standard algorithms are quite sensitive to insertion 
and deletion errors, which cause the string lengths to vary significantly. The method 
adopted previously in the fingerprint approach for sequence matching is the minimum 
energy algorithm usually used in stereovision [Lamon03], [Kanade85]. 
 
 
4.3.2.1 Localization with Global Alignment (GA) 

 
The global alignment algorithm used in this work is an adapted version of the basic 
algorithm used in the context of DNA string matching [Needleman70]. It uses a cost-
function as a means of estimating the cost of aligning the characters of the two strings 
under consideration. String matching is performed by minimizing this cost function. 
The following section attempts to first draw out the concepts (of alignment / computing 
cost/ matching using this algorithm) before going into more precise technical details 
about the same. Consider the example shown in Figure 4.9. This example uses two 
sample strings and computes the cost of aligning them. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.9:  An example of calculating the cost between two strings. 
 

More formally, five elements, which constitute the elements used in the global 
alignment algorithm (see Figure 4.10) can be distinguished. The first element is an 
alphabet denoted by A, typically a set of letters, which is not empty. The second 
element corresponds to the two strings which are to be aligned: the first is composed of 

                                                            
† The edit distance of two strings, s1 and s2, is defined as the minimum number of point mutations 

required to change s1 into s2, where a point mutation is one of: change a letter, insert a letter, or delete a 
letter 

string1 := « abcd » 

string2 := « bbc » 

⎪
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                1          +         0         +         0        +      0.6        =       1.6 
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m, the second of n letters of the alphabet. The occlusion symbol is used to represent a 
space inserted into the string. The cost function gives the cost for the match between 
two symbols of the alphabet, including the occlusion symbol. Finally, the cost matrix is 
used to keep the minimal cost of a match between the first i letters of the first string 
with the first j letters of the second string, keeping this value in the element (i,j) of 
matrix V. 
 
 
 

 
 
 
 
 
 
 

Figure 4.10:  The main elements of the Global Alignment algorithm. 
 
The values of the cost function fcost(a, b), are calculated experimentally as a function of 
the similarity between characters a and b. In other words the more similar the 
characters are, the lower is the penalty for a mismatch. The last step involves the 
calculation of the elements of the cost matrix. This is constructed using a technique 
named "dynamic programming". Dynamic programming methods ensure the optimal 
global alignment by exploring all possible alignments and choosing the best. Initially, 
the edges of the matrix are initialized with the cumulative cost of occlusions. This 
reflects the fact that the number of letters that must be jumped in one or the other string 
in order to obtain the best solution is not known a priori.  
 
The base conditions of the algorithm are: 
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For i and j both strictly positive, the recurrence relation is: 
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The three cases that can be distinguished from the above relation are: 
 

Alphabet  Α, A ≠ { } 

Strings  S1∈ mA , S2∈ nA , m, n ∈ N 

Occlusion symbol ε, ε ∉ A  

Cost function  ℜ→∪∈∪∈ εε AbAafcost ,:   

(4.15)

(4.16)

(4.17)
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• Aligning S1(i) with S2(j): The score in this case is the score of the operation 
fcost(S1(i),S2(j)) plus the score of aligning i-1 elements of S1 with j-1 elements 
of S2, namely, V(i-1,j-1)+ fcost(S1(i),S2(j))   

 

• Aligning S1(i) with an occlusion symbol in string S2: The score in this case is 
the score of the operation fcost (S1(i), ε)  plus the score of aligning the previous  
i-1 elements of S1 with j elements of S2 (Since the occlusion is not an original 
character of S2), V(i-1,j)+ fcost (S1(i), ε)   

 

• Aligning S2(j) with an occlusion symbol in string S1: Similar to the previous 
case, the score will be V(i,j-1)+ fcost (ε,S2(j)). 

 
If strings S1 and S2 are of length n and respectively m, then the value of their optimal 
alignment with the global alignment technique is the value of the cell (n,m).  

 
 

4.3.2.2 Localization with Global Alignment with Uncertainty 
 

The global alignment with uncertainty changes only the cost function described earlier. 
The cost function is adapted in order to take into account the corresponding uncertainty 
of features. The goal of adding the uncertainty in the string matching algorithm is to 
improve the distinctiveness of places. Next, a small example of global alignment 
algorithm with uncertainty will show the improvement in the matching (see  
Figure 4.11). 
 

The example depicted in Figure 4.11 shows the improvement obtained by the new 
fingerprint matching with uncertainty algorithm. Even if the two fingerprints of places 
from the map are similar (i.e. string1 and string2), the uncertainty of the features will 
determine the map fingerprint of place that best matches the observed fingerprint of 
place (i.e. stringObs). 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

  
Figure 4.11:  An example of the Global Alignment algorithm with the uncertainty: F1 
and F2 are the two fingerprints of places stored in the database of known locations. 

FObs is the observed fingerprint of place. 
 
 

Results GA with 
Uncertainty: 

 
95 %    FObs matches F1
75 %    FObs matches F2
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4.3.2.3 Indoor Experimental Results 
 
The test setup was the following: The robot extracted the three features (i.e. vertical 
edges, colors, and corners) in seven offices (see Figure 4.8) at 11 different places. For 
the new matching approach, the uncertainties of different features have been modeled. 
One fingerprint of place per room has been included in a database as reference (map 
initialization) for the localization approach. The other 70 fingerprints of places have 
been matched to the database for testing the localization.  
During all measurements, the orientation of the robot was approximately the same. This 
simplification could be omitted by letting the robot estimate its orientation by 
considering all rotations of the fingerprint string. 
For a given observation (fingerprint of place) a match is successful if the best match 
with the database corresponds to the correct room. Table 4.4 illustrates the percentage 
of successful matching and the mean rank for three string matching algorithms: 
minimum energy, global alignment and global alignment with uncertainty. The rank 
calculates the position of the correct room, with respect to the others, in the 
classification (e.g. if the match is successful than the rank is 1, if the correct room is 
detected with the second highest probability the rank is fixed at 2, etc.). 
 
 
4.3.2.3.1 Results with Global Alignment 
 
In order to explain and validate the choice of the global alignment algorithm, a 
comparison between an adaptation of the minimum energy algorithm and the global 
alignment methodology has been performed. The minimum energy algorithm is also a 
dynamic-programming based algorithm and it is usually used in stereo-vision. An 
adaptation of this algorithm has been developed in [Lamon01]. Both algorithms (i.e. 
global alignment and minimum energy) have been tested in the same environment and 
under the same conditions. The test setup has been described above. In Table 4.4, one 
can see the improvement obtained using the global alignment technique in comparison 
to the minimum energy algorithm. Both the percentage of good classifications and the 
mean rank are improved. The classification accuracy with the global alignment 
algorithm is of 75 % and the mean rank of 1.32.  
 
 
4.3.2.3.2 Results with Global Alignment with Uncertainty 
 
The global alignment with uncertainty is just an adaptation of the global alignment 
algorithm, wherein, the uncertainty of features was added.  
 
TABLE 4.4: Classification using string matching, comparing minimum energy, global 

alignment and global alignment with uncertainty algorithms. 
 
 
 
 
 
 
 

 right classifications mean rank 
minimum energy 58.82% 1.85 
global alignment  75% 1.32 
global alignment with uncertainty 83.82% 1.23 
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In Table 4.4, one can see the amelioration obtained, from using global alignment with 
uncertainty instead of the global alignment or minimum energy algorithm. The results 
with global alignment with uncertainty algorithm have 83.82% of successful matches, 
which corresponds to a clear improvement of 8.82% with respect to the standard global 
alignment. However, false-classified rooms delivering high probability (second or third 
highest probability), which are typical results in the experiments, entail important 
information, which can be used in combination with a localization approach such as a 
Partial Observable Markov Decision Process (POMDP). More details are given in 
Chapter 6. 
 
 
4.3.2.4 Outdoor Experimental Results 
 
For outdoor experiments, the test setup was the following: data was acquired from both 
the lasers and the omnidirectional camera, using the system mounted on the “SMART“ 
vehicle. The approach has been tested in a part of the EPFL campus (highly structured 
environment), shown in Figure 4.12, on a 1.65 km of trajectory.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.12:  The outdoor test environment (a part of the EPFL campus) with the 
trajectory of 1.65 km long traveled by the “SMART“ vehicle. 

 
The reference map (the database) contains 15 different locations within the campus. 
The test set for localization is composed of 10 different fingerprints of places for each 
location. These test fingerprints of places have been extracted in a zone of 4 meters 
long and 2 meters large with respect to the reference location. 
 
The vehicle orientation was not fixed a priori. During all measurements, the vehicle 
estimated its orientation by considering all rotations of the fingerprint string.  
Figure 4.13 depicts this phenomenon. Figure 4.13(a) represents a part of the 
environment within the EPFL campus, at a crossing. Figure 4.13(b) represents the same 
scene as the one illustrated in Figure 4.13(a), after turning left at the crossing and 
traveling 4 meters further. The scenes change less in outdoor environments than in 
indoor environments. In indoor environments, traveling 4 meters results the fingerprints 
of places change drastically. Contrary to this, in outdoor environments the features 
change less and thus the fingerprints of places change less. In Figure 4.13 the 
fingerprints of places appear to be totally different at a first glance, but they are almost 
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the same with a shift of 110° degrees. This problem is easily solved by our algorithm 
that takes into account all possible rotations. 
 
 

 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 

(b) 
 

Figure 4.13: Fingerprint-matching is orientation independent: (a) Illustrates one 
location in an outdoor environment - at a crossing, just before turning. The 

corresponding fingerprint of place obtained is: ncfccfccccccccffnccvncvnccccnccncccc  
(b) The same scene after turning left and traversing 4 meters. The fingerprint of place 

obtained from the scene illustrated in (b) is: nccccccncfccfccccccffnccvncccvncccc.  
 

For a given observation (fingerprint of a place) a match is successful if the best match 
with the database corresponds to the location in the outdoor environment. Table 4.5 
illustrates the percentage of successful matching and the mean rank for the two string 
matching algorithms described above: global alignment and global alignment with 
uncertainty. The rank calculates the position of the correct outdoor location, with 
respect to the others, in the classification (e.g. if the match is successful than the rank is 
1, if the correct outdoor location is detected with the second highest probability the 
rank is fixed at 2, etc.). 
 

TABLE 4.5:  Classification using string matching, comparing global alignment and 
global alignment with uncertainty algorithms, in outdoor environments. 

 
 
 
 
 
 
The results are as good as those obtained with the same algorithms in indoor 
environments. The “SMART“ vehicle was correctly localized, with the global 
alignment algorithm, with a percentage of 72.66%. The mean rank obtained is 1.31. As 
the table clearly shows, even in the case of outdoor environments, the global alignment 
with uncertainty algorithm for the fingerprint-based localization outperformed the basic 

 right classifications Mean rank 
global alignment  72.66% 1.31 
global alignment with uncertainty 80.67% 1.24 
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global alignment algorithm. The percentage of correct classification was 80.67%, with 
a mean rank of 1.24. The mobile vehicle was correctly localized most of the time. In 
those cases when the localization was erred, the vehicle was classified with the 2nd or 
the 3rd highest probability, which still gives significant information. 
 
 
4.3.3 Fusion of Bayesian Programming and Global Alignment 
 
In Section 4.3.1.6.1, it was shown through simulation that if sufficient information  
(i.e. the number of occurrences of the landmarks) was available, the robot was able to 
recognize locations without any difficulty. The real world experiments performed in 
Section 4.3.1.6.2 took into account only the vertical edges and the corners  
(i.e. extremities of the segments). In order to achieve results as good as the ones shown 
in simulation, all the information contained in the fingerprint of a place should be used. 
The idea of the new approach follows the fusing philosophy, and hence the use of 
redundant information. A drawback of this approach is that the resulting scheme after 
the fusion of the Bayesian Program and the global alignment algorithm is more 
expensive in terms of computational load (i.e. resources and computational time 
required by the algorithm). The new approach that combines the first two methods 
described in Section 4.3.1 and Section 4.3.2.1 respectively is illustrated in Figure 4.11.  

 
 

4.3.3.1 Bayesian Program 
 

The Bayesian Program depicted here is the same with the one illustrated in Figure 4.11, 
with some additions. One more variable has been added – Fp, which represents the 
fingerprint of a place. 
 

Although the fingerprint string Fp, constructed over all the features (see Section 3.4), 
adds some redundancy to the system, it simultaneously introduces valuable information 
about the relative order of the features. This will serve to improve the results. It is 
assumed that the variables VE, CP, C and Fp are independent from one another. The 
introduction of a new variable in the Bayesian Program changes the decomposition and 
consequently a new parametric form appears. The decomposition is described as 
follows:  
 

)   ()   ()   ()   ()  (

  

πδδππδδππδ

δπ

LocFpPLocCPPLocVEPLocCPLocP

) Fp  C VE CPP(Loc

=
 

 
 

Thus, to calculate the probability of the fingerprint sequence given the location and all 
prior knowledge )   ( πδlocFpP , the global alignment algorithm (see Section 4.3.2.1) is 
used. Let ),( locfpFpnmentGlobalAlig  be a function yielding the minimal cost of the 

global alignment algorithm for two fingerprint strings. The new Bayesian Program 
describing the fusion between the previous Bayesian Program approach for fingerprint 
matching (see Figure 4.4) and the global alignment algorithm, is depicted in  
Figure 4.14. 
 
 

(4.18)
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Figure 4.14: The fusion of Bayesian Programming and Global Alignment 
algorithm written in BP formalism 

 
 
 
 
 

   Pertinent Variables 
 

        VE : vertical edges  CP : color patches 
        C  : corners  Fp : a fingerprint of place 
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4.3.3.2 Experimental Results 
 
The same test setup as the one described in Section 4.3.1.2.6 is used. By making the 
fusion between the Bayesian Program approach and the Global Alignment algorithm, 
we want to know “What is the overall classification capability of the system using both 
string matching and MOG approach combined in a Bayesian Program?.” Because the 
number of color patches is too small to give significant results, they were omitted for 
the MOG calculations. Nevertheless they were used for the fingerprint strings.   
 

TABLE 4.6: Results of the classification using all the features (vertical edges and 
corners) and the fingerprint string matching. 

 
 
 
 
 
The success of room classification is defined as the detection of the correct room with 
the highest probability. The results have given a percentage of successful matches of 
82.4%, when the number of MOG components  kMOG = 5 (see Table 4.6). 
 
 
4.4 Discussion and Comparison of the Place Recognition 
Experiments  
 
In the four sets of experiments, the BIBA robot has acquired the ability to recognize 
priorly visited places within the environment. The indoor experiments were similar in 
that they all used fingerprints of places (i.e. circular list of features) and they were all 
conducted under the same conditions. However, they differed in the choice of the 
algorithm used to perform the topological localization. 

 

The first set of experiments used Bayesian Programming (i.e. a generic formalism) 
combined with mixture of Gaussians (MOG) and EM algorithm. The results showed 
that the number of Gaussians to be used depends on the number of occurrences of the 
features. Only vertical edges and corners (i.e. extremities of line-segments) have been 
used. By increasing the number of MOG components, an improvement of the results 
was noticed (e.g. the results obtained by using the vertical edges and corners as 
features, with kMOG = 3, a percentage of 58.8% of right classification was detected; with 
kMOG = 4, a percentage of 66.7% correct classification was obtained and finally with 
kMOG = 5, the same percentage as previously (i.e. of 66.7%) was found with a better 
mean rank) (see Table 4.3).    

 

The second set of experiments used a new approach, named the global alignment (GA) 
algorithm. All the features present in the fingerprint of a place were taken into account. 
A string-matching process was used to distinguish between the locations and hence 
localize the robot. 

 

The third set of experiments used an adapted version of the global alignment algorithm, 
wherein the uncertainty of the features was also incorporated. This uncertainty is an 
important element that has to be taken into account when performing localization. 
Since the features extracted with the omnidirectional camera are less reliable than those 
extracted with the laser scanner, when the fingerprint matching is done, a bigger 

 kMOG = 3 kMOG = 4 kMOG = 5 
ve & c & Fps 61.1% 1.78 70.6% 1.58 82.4% 1.23 
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importance factor (i.e. depending on the uncertainty of feature extraction) was given to 
laser scanner features than to omnidirectional camera features. The performance 
(percentage of correct classification) of the adapted global alignment algorithm was 
found to be better than the basic global alignment algorithm by as much as 8.82% (see 
Table 4.7). The outdoor experiments were performed using the ”SMART” vehicle, in 
1.65 km portion of the EPFL campus. Both the global alignment and the global 
alignment with uncertainty algorithms were used to localize the vehicle in these 
experiments. Their performance was compared. Global alignment algorithm produced 
correct classifications in 72.66% of the test cases. The second algorithm incorporated 
the uncertainty in the features themselves and produced significantly better results. It 
correctly classified 80.67% of the test cases thereby improving over the basic global 
alignment algorithm approach by about 8%. 

 

The last set of experiments combined aspects of both the previous approaches: it used a 
Bayesian Program, like in the first experiment, to which it added the global alignment 
algorithm, as in the second experiment. A clear amelioration with respect to the results 
obtained with both methods alone was noticed. The percentage of successful matches 
by using the vertical edges, the extremities for MOG and the fingerprint of place 
containing all the ordered features was of 82.4%. The rest of the mismatched locations 
were found on the second or third positions.  

 

All these results are summarized in the following table (see Table 4.7): 
 

TABLE 4.7: Comparison of the results obtained with the different fingerprint-
matching algorithms. 

 
 

Thus, the adapted global alignment algorithm (with uncertainties of features) was 
deemed to be the most appropriate method for the rest of this thesis, owing to its 
simplicity, robustness and yet high degree of accuracy. With this in mind, future usages 
of the term "fingerprint-matching" are meant to imply that the underlying method being 
used is the adapted global alignment algorithm (with uncertainties of features 
incorporated). 
 
 
4.5 Summary 
 
This chapter presented different algorithms for topological localization (i.e. place 
recognition) and showed through its results how mobile robots recognize locations they 
have visited before. In the place recognition experiments, the robot recognized the 
different locations by looking at the circular ordered sequence of features (i.e. the 
fingerprint of a place) and by comparing it with those of the known locations. Four 
algorithms for fingerprint-matching were developed: two probabilistic approaches  
(i.e. the Bayesian Program and the fusion between the Bayesian Program and the global 

 right classifications mean rank observations
minimum energy 58.82% 1.85 - 
BP(ve & ex) 66.7% 1.67 kMOG = 5 
global alignment 75% 1.32 - 
BP(ve & ex & Fp) 82.40% 1.23 kMOG = 5 
global alignment with uncertainty 83.82% 1.23 - 
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alignment algorithm) and two other methods, dynamic programming based. A 
discussion of the different algorithms has been concluded with a comparison of the 
results obtained using each of them. Even if false-classified rooms delivered high 
probabilities (second or third highest probability) this can entail important information 
if used in combination with a localization approach such as a Partial Observable 
Markov Decision Process (POMDP) (see Chapter 6). 
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5  

Indoor Exploration Tools 
 
5.1 Introduction 
 
Autonomous robot map generation warrants suitable exploration strategies so as to 
enable the robot to discover its environment. In order to autonomously acquire and 
create maps, robots have to explore their environment. This chapter describes the 
different behaviors and methods used by our mobile platform to explore indoor 
environments: wall following, mid-line following, center of free space of a room, door 
detection, and environment structure identification.     
 
 
5.2 Wall Following 
 
Wall following behavior is an important behavior for mobile robot navigation. Many 
methods have been investigated, developed and discussed in literature for wall 
following.  The methods described in [Remolina97] and  [vanTurennout92] are just two 
examples from among the many existing ones. 
 
The technique used to follow walls adopted in this work is described in the block 
diagram depicted in Figure 5.1. Following a wall consists of finding a wall in the 
environment and moving along-side it (i.e. moving parallel to the detected wall while 
maintaining a safe distance from it). Thus, in order to be able to track a wall, several 
processing steps are involved. 
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Figure 5.1: Wall Following Diagram. 
 
 

5.2.1 Wall Detection 
 
The first part is the detection of the wall to follow. In this work, it is assumed that a 
wall exists if the length of the line segment characterizing the wall is greater than 1 m. 
 

In order to find a wall to follow, several steps are required. Firstly, the  
Douglas-Peucker algorithm (described in Section 3.2.1.2) is used to perform the 
segmentation of the data given by the two laser scanners of the robot, so as to find all 
the line-segments. From the set of all line-segments detected, the longest line-segment 
is selected. Since the hallways are typically made up of doorways and walls, they 
consist of several collinear line segments. In order to identify the longest wall to 
follow, all the collinear line-segments are connected.  
 

If no wall is detected by the robot, a wandering behavior in its environment is adopted 
until one is found. Wandering is the simplest reactive behavior that an autonomous 
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mobile robot can have. The robot doesn’t follow a pre-defined trajectory. The behavior 
relies on the move-straight-forward action. If an obstacle is detected, the robot avoids it 
and continues moving in a straight line until a wall is detected.  
 

Once a wall is detected, a control law is used to control the steering angle. For example, 
if the distance from the robot to the wall is greater or smaller than a predefined 
threshold, the robot would change its steering angle so that this distance is close to the 
predefined threshold. This is described in the next section. 
 
 
5.2.2 Control Law 
 
In this part, the wall following control law that maintains the robot at a predefined 
distance from the wall while moving is described. The indoor robot used in this work, 
the BIBA robot (see Figure 1.2(a)), has a differential drive kinematics  
(see Figure 2.1). 
 

In [Remolina97] and [vanTurennout92], a control law for boundary following, that 
specifies the value of the controlled variable ω  (the robot’s steering angle), is given as: 
 

 

[ ],1 ekvk
v e−−= θω θ  

 
 

where e  and θ  are the observed variables. The difference between the observed and 
expected (predefined) distances of separation between the robot and the object (in this 
case, a wall) is represented by e  and the orientation of the robot with respect to the 
boundary is designed by θ . The parameter v  indicates the forward velocity of the 
robot. This control law is similar to a PD controller and is depicted in Figure 5.2.  
 
The system is critically damped if: 
 

ekk 4=θ . 

 
This controller is illustrated below: 
 
 
 
 
 
 
 
 
 
 

Figure 5.2: Control law for wall-following behavior, where 
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In order to estimate the values of the two variables e  and θ , a Kalman Filter is used. 
 
 
5.2.3 Kalman Filter (KF) 
 
A Kalman filter [Kalman60] is employed to estimate the state of the system represented 
by [ ]TeX θ = , where e  and θ  are defined as above (see Figure 5.3). The odometry, as 
measured by the encoders (proprioceptive sensors) is used to perform the  
“prediction step“. The predicted state is corrected (“update step“) using the state 
estimate from the laser range data (extereoceptive sensor). 
 
 

• Prediction Step 
 

As mentioned earlier, the state of the system is represented by [ ]TeX θ = . This vector 
comprises of the quantities that are required to be estimated. In order to model the 
odometry error (see more details Section 2.2) of such a system, the error in the 
displacement of each wheel (left and right) is calculated separately, and the uncertain 
input is expressed as: 
 

[ ]TLRku δρδρ ,)1( =+ , 
 

where Rδρ  and Lδρ  are the displacements of the right and left wheel respectively.  
 

The corresponding diagonal input covariance matrix is given as: 
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where Rk and Lk  are two constants (with unit meter) representing the non-systematic 
parameters of the motor drive and the wheel floor interaction.  
 

The Gaussian error model for the odometry is given by: 
  

( ),)1(),1( ++ kUkuN e  
 
where )1( +kue  is the mean odometry. 
 
The “prediction step“ of the state estimation process is given by the following 
equations: 

 
))1(),(()1( +=+ kukkxfkkx  

and 
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where P  is the covariance matrix of the estimated state, and xf∇ and uf∇ are the 
Jacobians taken with respect to the uncertain inputs )1( kkx +  and )1( +ku . 

 
Equation (5.6) may be written as follows: 
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=  and d  is the distance between the left and 

the right wheel. 
 
The Jacobians of the associated uncertainty are given by the following expressions: 
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• Update Step 

 
 The “update step“ uses the lines extracted from the data of the laser scanner 
(see Section 3.2.1 for the line-extraction algorithm) to estimate the state of the system. 
This estimate is used to update the predicted estimate and thus arrive at a posterior state 
estimate of the system as shown below.  
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Figure 5.3: Wall following technique description 
 
 
Let ( )1+kz  be the extracted line parameters that constitute the vector of observations 
and ( )1+kR  be its associated observation covariance matrix. 
 

The observation process has the following form: 
 

( ) )),1(),1((1 ++=+ kwkkxhkz  
 
where )(⋅h  is the function that links the state of the system to the measurement and  w  
represents the measurement noise.  
 

Thus, the equation below is obtained: 
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Based on these assumptions, the correction step is described by the following 
equations: 
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where )1( +kG  is the Kalman gain, h∇  is the Jacobian with respect to the system’s 
state prediction )1( kkX + , and )1( +kInnov  is the innovation.  
The innovation )1( +kInnov  reflects the difference between the predicted measurement 
and the actual measurement. This is expressed as: 
 

))1(()1()1( kkxhkzkInnov +−+=+ . 
 
Thus, the a posteriori state estimate )11( ++ kkX  is expressed as a linear combination 

of the a priori state estimate )1( kkX +  and a weighted difference between the actual 
measurement and a measurement prediction as shown in Equation (5.15). 
 
 
5.3 Mid-line Following 
 
Mid-line following (MLF) behavior works in a very similar manner as wall following 
behavior. The same control law is also used here. This behavior needs the detection of 
two parallel walls. In comparison with the wall following behavior where only one 
main wall was used, for mid-line following behavior another wall parallel to the main 
wall must be found. The mid point of the corridor is found by averaging the two 
distances from the robot to the two walls.  
 

Mid-line following presents an important advantage with respect to wall following in 
that it is flexible in its usage for different types of indoor environments. Typically, 
indoor environments consist of corridors having different widths. Performing mid-line 
following allows the mobile platform to maintain its mid-line trajectory in the corridor 
irrespective of its width. Wall following is not as flexible as MLF in the context of 
handling varying width corridors/spaces. This is due to the fact that the mobile platform 
follows the walls by maintaining a predefined distance with respect to it. When it 
changes from the right to the left wall (or vice-versa), if the predefined distance is not 
in the middle the mobile platform traverses the corridor in zig-zag fashion. 
 
 
5.4 Center of Free Space 
 
There are many alternatives for the positioning of a robot in a room. The robot could 
detect doors and stop at the entrance or it could enter a room until a pre-defined 
distance has been reached. The drawback of these methods is that they don’t consider 
the dimensions and the shape of the room. This can lead to non-optimal positions such 
as places close to obstacles obtruding most of the field of view of the room. Therefore, 
we assume that the position in the room with the maximum free space around it is the 
one with the highest probability of extracting numerous and characteristic features. This 
ensures high distinctiveness of the recorded fingerprints in the mapping process.  
 
 
 
 
 

(5.17)
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5.4.1 Method Description 
 
The laser scanner data is used to compute the center of gravity of the free space around 
the robot. Because the angle between two scan points is constant, the density of points 
is inversely proportional to the distance. To account for this, the points must be 
weighted, giving the following equation for computing the gravity center:    

 

[ ]Tii iii iG yx
n

x ∑∑= ωω ,1  

 
where iω  the corresponding weights which are set equal to the distances from the scan 
points to the robot [Lamon03] and n  the sum of the weights.  
 
This method is depicted with a simple example, composed only of six points, in  
Figure 5.4. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.4: Center of Free Space: (a) Shows the robot, the six points observed P1 to 
P6 and the corresponding weights set to the distance between the points to the robot; 

(b)Illustrates the calculated center of free space 
 
 
5.4.2 Experimental Results 
 
In order to validate this method, the positioning capabilities of the robot have been 
tested and analyzed. For the experiments, the robot visited ten rooms of the environment 
depicted in Figure 4.8 and tested the method four times in each room. The results are 
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conclusive: the robot consistently reached the center of the free space in every room it 
was taken to (see Figure 5.5). 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

Figure 5.5: Different views of the free space taken by the panoramic vision system, 
with their correspondent data given by the laser scanner. The position of the robot 
corresponds to the center of the free space measured with the laser scanner, 
represented by a ‘X’. 
 

The repeatability was also tested: the robot reached an area of radius of 15 cm around 
the center of the free space. 
 
 
5.5 Indoor Structures and Door Detection using Bayesian 
Programming 
 
Since indoor office environments are usually orthogonal and highly structured and 
consist of offices, doors and corridors, a suitable method for the detection of these 
indoor structures and doors is useful for navigation. This section presents a model for 
learning the structure of the environment (e.g. corridor, door, x-crossing) and 
recognizing the learned situations based on a probabilistic approach, when only the 
laser scanner is used. The approach described here has been done in collaboration with 
Luc Dobler and Guy Ramel, and has been published at the IEEE International 
Conference on Intelligent Robots and Systems (IROS) in 2004 [Tapus04c]. 
 

Different techniques have been described in literature to identify the structure of the 
environment [Kortenkamp94], [Franz98], [Limketkai05]. The work most closely 
related to ours is one by Aycard in [Aycard97], in which places are learned by using the 
second-order Hidden Markov Models (HMM2). The maximum likelihood estimation 
criterion was used to determine the best model parameters given the corpus of 
observations, in order to perform the learning process. The recognition is carried out 
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using the Viterbi algorithm. For the experiments, ultrasonic and infrared sensors were 
employed. Unfortunately these sensors are very sensitive to ambient light, object color, 
object orientation and the surface of reflection. 
 

The method employed here is probabilistic in that it takes into account the uncertainty, 
impreciseness and incompleteness of knowledge specific to the environment. The 
approach is based on the Bayesian Programming formalism (see Appendix A for a 
detailed description).  
 
 
5.5.1 Implementation Related Assumptions 
 
A simple navigation system has been implemented on the robot, so that the robot stays 
in the middle of the corridor (i.e. mid-line following), parallel to the two walls 
constituting the corridor. This navigation methodology has been detailed in Section 5.3. 
 
 
5.5.2 Indoor Structures and Doors Corpus 
 
A corpus with the main indoor structures situations and doors that the robot must detect 
is constructed as shown in Figures 5.6(a) and Figure 5.6(b). In Figure 5.6(a) the indoor 
structures are illustrated. These are: corridor, X-crossing, T-crossing and  
L-Intersection. For the T-crossing we have chosen three cases. This decision is justified 
by the fact that the recognition is only made with probability distributions and if we 
would have had only one state for the T-crossing, the distribution would not have been 
sufficient for this state. Figure 5.6(b) depicts different types of doors: closed door, right 
partially-opened door, left partially-opened door, opened door and no door.   
 

The environment is assumed to be orthogonal i.e. the case for most office buildings, 
including the institute building where our robot was operating. The above mentioned 
limitation is not an inherent loss of generality because it is only a simplification for the 
current implementation and not a general requirement for the algorithm. 
 
 
5.5.3 Bayesian Program for Indoor Structures and Doors 
Detection 

 
The main goal of this work is to determine the state in which the robot may be, for 
instance that the robot is in a corridor and has a partially-opened door on its right.  
 

First, in a learning phase, different indoor situations and doors are presented to the 
robot. During this phase, the robot collects the values of its sensory variables that 
correspond to a certain state. This data set is then used to identify the free parameters of 
the parametric forms. 
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Figure 5.6: (a) The indoor structures to learn: Corridor, +Intersection, T Intersection, 
L-Intersection. (b) The types of door to learn: closed door, right partially-opened door, 

left partially-opened door, opened door and no door. 

(a) 

(b) 
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The second step of the approach is the phase of application, when the robot has to 
recognize the situation in which it is. To solve this problem, the robot will extract the 
actual observation and answer the following probabilistic question: 
 

)(maxarg πδobssitP
Statesit

sit
∈

=∗  

 
The actual state of the robot may be recovered by comparing the actual observation 
with the database of known situations and choosing the situation sit* with the highest 
probability. 
 
 
5.5.3.1 Bayesian Program 
 
Figure 5.7 illustrates the Bayesian Program used for the indoor structures and door 
detection. A Bayesian Program, as shown in Figure A.1 (see Appendix A), is divided in 
two main parts: the decomposition and the question. The decomposition is also 
composed of two parts: the specification and the identification. All these are described 
in detail in the next sub-sections. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 5.7: The Bayesian Program used for the indoor structures recognition and door 
detection, following the unique notation and structure described in Appendix A. 
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A Specification 
 
This part defines the preliminary knowledge. 
 
• Pertinent Variables 
 
 First of all, the variables that are pertinent for this task are defined as follows: 

nOO ,,1 Κ  the set of observations and State  the situation in which the robot can be.  
 

In our case, the observation iO  is equal to the maximum distance found with the laser 
scanner in the corresponding section i  (see Figure 5.8(a)). This choice reinforces the 
robustness of the observation iO  with respect to the robot’s orientation and to the noise 
in the environment. For example, if the robot’s orientation changes with an angle 
smaller than n/360°  degrees, the robot finds similar values; a person near the robot 
does not influence the observation since the robot takes into account only the maximum 
distances. 
 
• Decomposition 
 
The decomposition consists in decomposing the joint distribution )|...1( πnOOStateP  
into a product of simpler terms. This step also permits to express the independence and 
dependence relationships between the variables. This distribution is conditioned by 
both π  the preliminary knowledge we are defining, and δ  a data set that will be 
provided during the learning phase. 
 

Since it is considered that the observations nOO ,,1 Κ  are dependent on the location the 
following decomposition results: 
 

∏
=

⋅=
n

i
StateiOPStatePnOOStateP

1
)|()|()|...1( πδπδπδ  

 
• Parametric Forms 
 
From the result of the decomposition formula (see Figure 5.7) two different kinds of 
probability distributions can be distinguished: 
 

• Since no a priori information about the different indoor structures situations 
or about the doors is available, each situation is considered to be equally 
probable and consequently the probability of a state given all the a priori 
knowledge is expressed as a uniform distribution.  

 
UniformStateP =)|( πδ  

 

• To determine the probability of each observation iO  given the indoor 
structure or door situation and all the a priori knowledge, a Gaussian 
parametric form is assigned:  
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B Identification 
 
Different indoor situations and doors are presented to the robot. During this phase, the 
robot collects the values of its sensory variables that correspond to a certain state. This 
data set δ  is then used to identify the free parameters of the parametric forms.  
 

This phase corresponds to the identification of the free parameters appearing in the 
parametric forms. In our case, the parametric forms contain free parameters, the mean 
and the standard deviation in the Gaussian distribution. It is necessary to give 
numerical values to these parameters so as to finish the description. These numerical 
values can be obtained through a learning process. A supervised learning is used here. 
The robot visits different situations denoted by State and in each situation sit∈ State for 
each observation iO  the robot determines the values of the )(Stateiμ (i.e. mean) and 

)(Stateiσ (i.e. standard deviation). A method similar to the one depicted in [Lebeltel99] 

is adopted. These two values (i.e. mean and standard deviation) are identified as 
follows: 

n

n
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where n  is the number of times the robot was in a situation State  during the learning 
process. 
The mean and standard deviation are updated at each new measurement, thus 
permitting an incremental learning process. 

 
C Question 
 
Once the two previous steps are identified, the robot can answer any question 
concerning this joint distribution (see Equation (5.20)). Therefore, the question 
described in the Bayesian Program shown in Figure 5.7, )...1( δπnOOjStateP  can also 

be answered. 
 
 
5.5.3.2 Discussions 
 
The interesting point is that the same Bayesian Program is used for both indoor 
structures recognition and door detection. The only difference is the domain of the 
variable State and the database used for the learning. For the case of indoor structures 
identification, the variable State contains the following values: corridor, X-crossing, T-
crossing and L-Intersection. The 360° view of the robot is divided in n equal parts, as 
shown in the Figure 5.7(a). In the case of door detection the variable State takes the 
values:  closed door, right partially-opened door, left partially-opened door, opened 
door and no door. The observation field is portioned into four Zones. The method of 

(5.23)

(5.24)
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splitting the field of view of the robot in zones permits also the detection of the 
direction of doors. The Bayesian Program gives an answer for each of these zones in 
order to detect a door in front, behind, to the left and to the right of the robot. Each of 
these zones is split in n equal slices, as illustrated in the Figure 5.8(b). For both cases: 
indoor structures identification and door detection, the number of divisions n is fixed to 
8. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.8: The observation field of view of the robot: a) for the topology recognition 
the 360° view of the robot is portioned in n parts; b) for doors detection the view of the 

robot is divided in four Zones and each zone is portioned in n parts. In our 
implementation, for both cases a) and b) n is equal to 8. 

 
 

This method is very flexible with respect to the utilization of the same program for two 
different tasks: indoor structure recognition and door detection. 
 
 
5.5.4 Experimental Results 
 
The approach has been tested in a 50 m x 25 m portion (see Figure 4.8) of our institute 
building. For the experiments, the BIBA robot (see Figure 1.2 (a)) has been used.  
 

A training data has been collected and a Gaussian model for each of the seven indoor 
structures and for each of the five door types have been constructed. The robot was 
placed 25 times in each situation in order to construct a robust training corpus. In order 
to complete the training, for each situation and each observation the Gaussian 
parameters (the mean and the standard deviation) have been calculated, as shown in 
Section 5.5.3.1. 
 

To test our approach for indoor structures and doors recognition, 50 tests for each 
situation have been performed.  
 

The results are summarized in Table 5.1 and Table 5.2. In these two tables the results of 
indoor structure identification and door detection are presented. Each row corresponds 
to a situation that the robot observed and each column corresponds to a situation that 
the robot recognized.  

 Robot 
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In Table 5.1, it can be seen that for instance, corridor recognition is very reliable, with a 
recognition rate of 98%. For the indoor structures identification, the percentage of 
successfully recognition is between 82% and 98%, with an average of 92.2%. It is 
important to notice that the falsely recognized situations are always similar to the real 
indoor structures situations. It would have been more compromising to recognize a 
situation like ╔ or ╠  where the situation were ╗ and ╣ respectively, because these are 
opposite indoor structure situations.  
 
TABLE 5.1: The table shows the results of indoor structure recognition. The following 
notations has been used: ║(corridor),  ╗ (left L-Intersection), ╔ (right L-Intersection), 
╣ (left T-crossing), ╠ (right T-crossing), ╦ (middle T-crossing), ╬ (X-crossing). 

 
 ║ ╗ ╔ ╣ ╠ ╦ ╬ 
║ 98%   2%    
╗  82%    18%  
╔   96%   4%  
╣ 8%   86%   6% 
╠ 6%    90%  4% 
╦      98% 2% 
╬ 4%      96% 
 
 
In Table 5.2, it can be noticed that in the case of the "left partially opened door" 
situation, 36% of responses were false. Instead of detecting the  
"left partially opened door" situation, the "opened door" has been detected (e.g. see 
Figure 5.8). However, this is not very important if the context of recognition is the 
detection of doors without considering its aperture. A similar false detection can be 
observed in the case of a "closed door" situation, where there are 20% of "no door" 
detections. However, most of the false detections can still be considered good results 
knowing that to determine a "closed door" situation, a jump near the frame of the door 
must be found. Another false detection is identified in our experiments where 6% of 
"opened door" situations are detected as "no door" situations. The "opened door" 
situations are separated in two zones (see Figure 5.7(b)), due to the wrong (i.e. not 
parallel to the walls) orientation of the robot. Thus, the robot’s observation doesn’t 
match correctly with the learning situation.  
 

The percentage of successful door detection is between 60% and 90%, and at an 
average of 80.4%.     
 
TABLE 5.2: The table shows the results of door detection. The following notation has 
been used: nd (no door), cd (closed door), od (opened door), lpod (left partially opened 

door) and rpod (right partially opened door). 
 
 nd cd od lpod rpod 
Nd 90%  4% 6%  
Cd 20% 76%   4% 
Od 6%  90% 4%  
Lpod   36% 60% 4% 
Rpod 4%  10%  86% 
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The application of our Bayesian Program for door detection shows how well suited our 
approach is, for this type of recognition. If we regroup the three situations in which the 
door is partially or completely opened, we have three possible situations "opened or 
partially opened door", "closed door" and "no door". The results for these three 
situations are even better than the previously mentioned classification of door states, the 
percentage of successful recognition being of 94%, 76% and 90% respectively. Another 
interesting statistic was computed in order to detect the percentage of successful door 
and no-door detection. The results are quite convincing - 90% and 94% respectively.  
 
 

 
 
 
Figure 5.9: False Positive Door Detection. A "left partially opened door" situation has 

been detected as an "opened door" situation. 
 
 
A combination between the two Bayesian Programs to perform the simultaneous indoor 
structure recognition and door detection has been implemented. This has been found to 
produce very promising results. A new learning corpus of 50 measurements has been 
constructed and 250 tests (50 tests for indoor structure identification and 200 tests for 
door detection) have been performed. An indoor structure or a door is recognized if the 
actual observation matches exactly with the real situation. Substitution errors occurred 
during the tests. We have divided the substitution errors in two types: satisfactory 
substitutions (applied only for the detection of doors) and false substitutions.  
 
 

These are defined as: 
 

• Satisfactory Substitution: The recognized situation is a confusion 
between the states: "right partially opened door", "left partially opened 
door", "opened door". For instance, the robot observes a  
"right partially opened door", when an "opened door" is present in the 
map. 

 

• False Substitution: The confusion of a state with another one, not in the 
category of satisfactory substitution. 
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Table 5.3 summarized the results obtained for the global recognition. 
 
 

TABLE 5.3: The table shows the results of global recognition 
 

 Number % 
Tests 250 100% 
Recognized 206 82.4% 
Satisf. Substituted  18 7.2% 
False Substituted 26 10.4% 

 
From the experiments, it can be observed that the different situations (indoor structures 
and doors) are globally well recognized. The results have given a percentage of 
successful recognition (classification) of 82.4% and 7.2% of satisfactory substitution  
(see Table 5.3).  
 
 
5.6 Summary 
 
This chapter presented different exploration tools which are used in the subsequent 
chapters. The behaviors described are wall following, mid-line following, find and go 
in the center of free space, indoor structures identification, and doors detection.  

 

Wall-following and mid-line following are two well known control laws that permit the 
robot to follow a wall or corridor. Mid-line following behavior is more suitable for 
typical indoor office environments due to its independence of corridor widths. In order 
to be able to ensure high distinctiveness of the observation, a new approach for 
positioning has been developed: the center of free space. This simple method has 
proven its efficacy in indoor environments. The robot reached an area of radius of  
15 cm around the center of the free space, when the test was performed for the same 
room. It is very important for the mobile platform to determine the indoor structures 
that surround it, so as to easily navigate and apply exploration strategies. A new 
technique for identification of indoor structures and detection of doors has been 
presented. Bayesian Programming has been used. The success rate for recognition of 
indoor structures is in average 92.2% and for detection of doors is in average 80.4%. 
These are very good results. The main sensor used for all exploration techniques was 
the 2D laser range finder by SICK.  
 

All these exploration tools help the robot to autonomously move within the indoor 
environment, and therefore to build maps of its environment.  
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6  

Simultaneous Localization and 

Mapping (SLAM) with 

Fingerprints of Places  
 
Navigation described by Gallistel [Gallistel90], as the capacity to localize itself with 
respect to a map, is an elementary task that a mobile and autonomous robot must carry 
out. To navigate reliably in indoor or outdoor environments a mobile robot must know 
where it is. For this, the robot needs to construct or maintain a spatial representation of 
the environment. In Chapter 4, different topological localization approaches for the 
case of a priori maps, were exhibited. Here, we approach the SLAM (Simultaneous 
Localization and Mapping) problem that is of a “chicken and egg“ nature – to localize 
the robot, a map is necessary and to update a map the position of the mobile robot is 
needed. 
 

The objective of the work presented in this chapter is to enable autonomous navigation 
without relying on maps a priori learned and without using artificial landmarks. 
Therefore, this chapter describes a new method for incremental and automatic 
topological mapping and global localization with POMDP (Partially Observable 
Markov Decision Processes) using fingerprints of places.  
 
 
6.1 Related Work 
 
A robust navigation system requires a spatial model of the physical environment such 
as a metric or topological map. Approaches using metric maps are suited when it is 
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necessary for the robot to know its location accurately in terms of metric coordinates. 
However, the state of the robot can also be represented in a more qualitative manner, 
similar to the way humans do it. The information can be stored as mental or cognitive 
maps – a term introduced for the first time in [Tolman48] – which permit an encoding 
of the spatial relations between relevant locations in the environment. This has led to 
the concept of topological representation. The topological map can be viewed as a 
graph of places, where at each node the information concerning the visible landmarks 
and the way to reach other places, connected to it, is stored. The topological 
representation is compact and allows high-level symbolic reasoning for map building 
and path planning. 
 

Although literature related to SLAM (Simultaneous Localization and Mapping) is very 
vast, we concentrate here on papers that we consider as most important and that have 
directly influenced our thinking and research work.  
 
The SLAM problem, as the construction of maps while the robot moves through the 
environment and the localization with respect to the partially built maps, was 
introduced in robotics in a seminal paper by Smith and Cheeseman [Smith86] in 1986. 
One of the first implemented systems was developed by Moutarlier and Chatila 
[Moutarlier89]. This approach used the Extended Kalman Filter (EKF) to estimate the 
posterior over robot pose and maps. Leonard and Durrant-Whyte in [Leonard92] 
proposed a similar stochastic method to SLAM. Metric maps are spatial representations 
that have been extensively studied in the robotics community. The stochastic map 
technique to perform SLAM [Castellanos99], [Dissanayake01], [Leonard92], and the 
occupancy grids approaches [Thrun98] are typical examples belonging to this kind of 
space representation. More recent vision-based metric approaches use SIFT (Scale 
Invariant Feature Transforms) features [Se02]. The SIFT approach detects and extracts 
local feature descriptors that are invariant to illumination changes, image noise, rotation 
and scaling. All these metric methods are used with high precision sensors. Thus, 
mapping yields a precise representation of the environment and consequently 
localization is accurate. However, metric SLAM can become computationally very 
expensive for large environments. Thrun, in [Thrun00], proposes probabilistic methods 
that make the metric mapping process faster and more robust.  However, metric 
approaches also suffer from other shortcomings. A negative aspect of metric maps is 
that they are not easily extensible so as to be useable for higher level, symbolic 
reasoning. They contain no information about the objects and places within the 
environment. 
 

Topological approaches to SLAM attempt to overcome the drawbacks of geometric 
methods by modeling space using graphs. Significant progress has been made since the 
seminal paper by Kuipers [Kuipers78], where, an approach based on concepts derived 
from a theory on human cognitive mapping is described as the body of knowledge 
representing large scale space. Kortenkamp and Weymouth in [Kortenkamp94] have 
also used cognitive maps for topological navigation. They defined the concept of 
gateways which have been used to mark the transition between two adjacent places in 
the environment. They have used the data from sonars combined with vision 
information in order to achieve a rich sensory place-characterization. Their work has 
been an amelioration of Mataric’s approach [Mataric90], contributing towards the 
reduction of the perceptual aliasing problem. The improvement is obtained by 
introducing more sensory information for place representation. A model by Franz, 
Schölkopf and Mallot [Franz98] was designed to explore open environments within a 



6.1   Related Work  101  

 

maze-like structure and to build graph-like representations. Their method has been 
tested on a real robot equipped with an omnidirectional camera. In [Hafner00] and 
[Owen98], the authors have used a model based on a self-organizing map which creates 
a topological representation of the environment while the robot explores it. Another 
topological model is described in [Choset01]. The environment is represented with the 
help of a generalized Voronoi graph (GVG) and the robot is localized via a graph 
matching process. Most recently, Beeson et al. have used Extended Voronoi Graphs 
(EVG) to demonstrate place detection in the context of topological maps [Beeson05]. 
In general, topological maps are less complex and permit more efficient planning than 
metric maps. Moreover, they are easier to generate. Maintaining global consistency is 
also easier in topological maps compared to metric maps. However, the main problems 
to deal with, when working with topological maps are the perceptual aliasing (i.e. 
observations at multiple locations are similar) and the automatic establishment of a 
minimal topology (nodes). 
 

Researchers have also integrated both the metric and topological paradigms, thereby 
obtaining a hybrid system. Thrun, in [Thrun00], uses occupancy-grid based maps in 
order to build the metric map. The topological map is extracted from the grid-based 
map. Learning a topological representation depends on learning a geometric map, 
which relies on the odometric capability of the robot.  However, in large environments, 
it is difficult to maintain the consistency of the metric map, due to the drift in the 
odometry. In [Tomatis03], Tomatis et al. have conceived a hybrid representation, 
similar to the previously mentioned work, comprising of a global topological map with 
local metric maps associated to each node for precise navigation. Another hierarchical 
multi-resolution approach allowing for high precision for metric mapping using a 
relative map filter and distinctiveness for topological mapping with fingerprints of 
places is presented in [Martinelli03a]. The authors of [Lisien03] have illustrated an 
extension of the model described in [Choset01] to H-SLAM (i.e. Hierarchical SLAM), 
by combining the topological and feature-based mapping techniques. Another hybrid 
approach is described in [Dufourd04]. Their model combines different representations 
(i.e. frontier-based, space-based, grid-based and topological), allowing in this way to 
improve the SLAM robustness and creating a more complex and useful spatial 
representation for reasoning and path planning. 
 

The method presented in this dissertation uses fingerprints of places to create a 
topological model of the environment. The fingerprint approach, by combining the 
information from all sensors available to the robot, reduces perceptual aliasing and 
improves the distinctiveness of places. For instance, in contrast with the SIFT features, 
the features used in the fingerprint of place are higher-level and they are “situated“ in 
the context of the environment. As they give higher-level information, they can draw 
out the semantics of the environment to a greater extent than the SIFT features.  
 

The main contribution of this chapter is the construction of a topological mapping 
system combined with a localization technique, both relying on fingerprints of places. 
This reduces the SLAM problem to one of matching the fingerprints representing the 
environment and does not involve topological-graph matching itself. This fingerprint-
based approach yields a consistent and distinctive representation of the environment 
and is extensible in that it permits spatial cognition beyond just pure navigation.  
 
 
 
 



102  6.   Simultaneous Localization and Mapping (SLAM) with Fingerprints of Places 

 

6.2 Environment Representation with Fingerprints of 
Places 
 
The same environmental model as the one described in Chapter 4.2 is also used here. 
The environment is represented in a topological fashion. The topological map can be 
viewed as a graph of places, where at each node the information concerning the visible 
cues and the way to reach other places connected to it, is stored. Fingerprints of places, 
described in Section 3.4, are used to represent places and therefore the nodes in the 
topological framework. The topological representation obtained is compact and allows 
high level symbolic reasoning for map building and navigation.  
 
 
6.3 Topological Localization and Map Building 
 
Map building is a fundamental task for creating representations of the environment the 
robot is moving in. The maps thus built are used for localizing the mobile robot.  
 

In this section the methods used to automatically build topological maps and globally 
localize the robot, are described. This approach has also been illustrated in the works 
[Tapus05b] and [Tapus04b], respectively. 
 
 
6.3.1 Topological Mapping Technique 
 
While navigating in the environment, the robot first creates and then updates the global 
topological map. One of the main issues in topological map building is to detect when a 
new node should be added in the map. Most of the existing approaches to topological 
mapping place nodes periodically in either space (displacement, Δd) or time (Δt) or 
alternatively attempt to detect important changes in the environment structure. Any of 
these methods cannot result in an optimal topology. In contrast, the approach presented 
in this work is based directly on the differences in the perceived features. 
 

In the following sub-sections, the fingerprint-based approach for incremental and 
automatic topological mapping is described. In addition, they clearly illustrate how a 
reliable and distinctive representation of the environment is obtained.  
 
 
6.3.1.1 Exploration Strategy 
 
The exploration strategy used in this work is very simple. The robot explores the 
corridors in a depth-first fashion, using a mid-line following behavior (see Section 5.3). 
A wall-following behavior (see Section 5.2) would also have been suited for corridor 
exploration. When open doors are detected (see probabilistic methodology for indoor 
structures and doors identification – Chapter 5.5), the robot explores the rooms and 
uses the go to the center of free space, behavior described in Chapter 5.4. The robot 
returns in the hallways by using a backtracking methodology. 
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6.3.1.2 Automatic Map Building 
 
Instead of adding a new node in the map by following some fixed rules (e.g. distance, 
topology) that limit the approach to indoor or outdoor environments, the method 
described in this work introduces a new node into the map whenever an important 
change in the environment occurs. This is possible using the fingerprints of places. A 
heuristic is applied to compare whether a new location is similar to the last one that has 
been mapped. 
 

The process of introducing a new node in the topological map is split into the following 
sequence of steps (see Figure 6.1): 
 

1) Start with an initial node (i.e. fingerprint f0) 
 

2) Move and at each Δt (time) or Δd (distance), take a new scan with the laser 
scanner and a new image with the omnidirectional camera and generate the new 
fingerprint fi 

 

3) Calculate the probability of matching, prob_matching, between the fingerprints 
fi-1 and fi respectively. Compute the dissimilarity factor, dissimilarity. 

 

prob_matching = P (fi ⎟ fi-1) 
 

dissimilarity(fi , fi-1) = 1- prob_matching 
 

4) If  dissimilarity(fi , fi-1) <θ then 
a. Add fingerprint fi to the current node nk 
b. Calculate the new mean fingerprint of the node nk 

 

 Else 
a.  A new node nk+1 is inserted (added) in the map 
b. Add fingerprint fi to the node nk+1 
 

5) Repeat from step 2) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.1: Flow-chart of the new topological node detection algorithm 

Calculate: 
prob_matching = )1( −ififP  

dissimilarity(
1

,
−i

fif ) = 1– prob_matching 

(6.1)
(6.2)
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In step 4), a threshold θ  is defined as the maximum allowable dissimilarity  
(i.e.1-prob_matching) between the fingerprints. The value of prob_matching is 
calculated with the "global alignment with uncertainty" algorithm. This method is an 
adaptation of the global alignment algorithm usually used for comparing D.N.A. 
sequences, introduced by Needleman and Wunsch [Needleman70] (see Chapter 
4.3.2.2).  The value of the threshold is determined experimentally. The incremental 
nature of the approach permits incremental additions to the map and yields the most up-
to-date map at any time. The basic process is depicted in the Figure 6.2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.2: Adding a new node automatically to the topological map by moving in an 

unexplored environment. The image is composed of seven measurement points (i.e. 
fingerprints of places) represented by the black points. The blue points depict the data 
given by the laser range finder.  The mapping system includes all the fingerprints of 

places  in a node until a significant change in the environment occurs and the 
dissimilarity between the fingerprints is greater than the threshold θ. 

 
It can be noticed in Figure 6.2 that the new node contains all posterior knowledge about 
the environment until the previous node.  
 

As mentioned previously, a step in the construction of the map is the generation of a 
mean fingerprint for each node. The following sub-section explains this process. It uses 
the "global alignment with uncertainty" algorithm, described in Section 4.3.2.2 (see 
[Tapus04b]) for fingerprint matching. 
 
 
6.3.2 Mean Fingerprint 
 
One of the main characteristics of topological maps is their compactness. Each place is 
represented as a single node. As mentioned above (see Section 6.3.1.2), in this work, a 
new node is introduced in the topological map just when important changes into the 
environment occur. With this, at the end, each node will be composed of a set of similar 
fingerprints of places. In order to compact even more the current representation, a 

2 5 3 4 6 7 

>θ 

<θ <θ … 
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unique identifier named the mean fingerprint is generated. This technique of clustering 
fingerprints of places into a single representation is described below. 
 
 
6.3.2.1 Clustering of Fingerprints 
 
As stated earlier, a fingerprint is extracted periodically in space (every Δd) or time 
(every Δt). A node is composed of several similar fingerprints that will be subsequently 
regrouped into a mean fingerprint. By choosing a suitable threshold θ, the mean 
fingerprint enables clustering of places into nodes. 
 

As soon as a new fingerprint is added to the current node nk, the mean fingerprint is 
updated by constructing the new mean fingerprint between the previous mean 
fingerprint and the newly introduced fingerprint.  
 

The generation of the mean fingerprint between two fingerprints is performed in several 
steps, described briefly below. The first step in the mean fingerprint generation process 
consists of matching the two fingerprints involved. As the orientation of the robot is not 
known a priori or fixed beforehand, the robot estimates it by considering all the 
possible permutations of one fingerprint sequence with respect to another. The 
fingerprint matching algorithm, illustrated in Section 4.3.2.2, yields their best match. It 
can be seen in Figure 6.3 (Step 1), that once the two fingerprint sequences are aligned, 
they have the same length. The aligned fingerprints contain also the occlusion symbol, 
introduced in Section 4.3.2.1, representing a space inserted into the string sequence. In 
the second step, the mean fingerprint between two consecutively obtained fingerprints 
of places is computed. The mean fingerprint contains the features that matched during 
the fingerprint matching process and those with a high probability of existence. 
  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 6.3: Illustration of the Mean Fingerprint Generation process. Fi, Fj and Fk are 
three consecutively obtained fingerprints. 
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The probability of existence of a feature (see section 3.4.4) is defined as the probability 
of being present in the environment when the robot perceives it. The higher the 
probability is, the more certain the existence of the feature is. The uncertainties of the 
features from the mean-fingerprint are weight averaged with the uncertainties of the 
features from the new fingerprint. For calculating the mean fingerprint for a specific 
node nk, these two steps are repeated until all the fingerprints of that node are included 
in it. Figure 6.3 describes this process through a simple example.  
 

The mean-fingerprint associates each node with a unique identifier. This enables the 
construction of a very distinctive and compact representation of the environment.   
 
 
6.3.3 Indoor Topological Localization with POMDP 
 
A series of localization techniques based on the fingerprint concept have been already 
presented in Chapter 4. These approaches perform a fingerprint-matching operation so 
as to localize the robot. The matching methods compare the observed features encoded 
in the fingerprints of places with the map fingerprints. Only the extereoceptive sensory 
information contained in fingerprints of places is used for matching, without taking into 
account the motion of the robot and the previous estimation. 
 

Hence, for topological navigation, a Partially Observable Markov Decision Process 
(POMDP) model [Cassandra96] is used here. The POMDPs integrate both the motion 
and sensor reports data to determine the pose distribution. Thus, by adding the motion 
information to the system, new knowledge about the robot’s position is acquired. The 
probability of being in a place is calculated in function of the last probability 
distribution, and the current action and observation. 
 
A POMDP is defined as <S,A,T,O>, where: 
 

• S is a finite set of environment states;  
• A is a finite set of actions;  
• T(s,a,s’) is a transition function between the environment states based on the action 

performed; 
• O is a finite set of possible observations; 
• OS is an observation function.  
 

With this information, the probability of being in a state s’ (belief state of s’) after 
having made observation o, while performing action a, is given by: 
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SSE  is the belief of state S  at the last step, tSE  is the belief state vector at the 

last step, and ),( tSEaoP  is the normalizing factor define as: 
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The key idea is to compute a discrete approximation of a probability distribution over 
all possible poses in the environment. An important feature of this localization 
technique is the ability to globally localize the robot within the environment. More 
details about this approach can be found in [Cassandra96]. 
 

The elements of the POMDP are defined for the present indoor model as follows: 
 

• Set of States S 
 

 The set of environment states is composed of the topological nodes 
 automatically detected with the algorithm described in Section 6.3.1.2. Nodes 
 are situated only in distinctive places within the environment. The results of 
 mapping show in Section 6.4.1 that nodes are usually placed in corridors in 
 front of doors, in offices and in other distinctive places within corridors. 
 

• Set of Actions A 
 

 A represents the set of actions that the robot can execute. The office buildings 
 are usually quite simple and most of the time orthogonal, which is the case 
 of our institute building (see Figure 4.8) where the BIBA robot  
 (see Figure 1.2(a)) operates. The actions used by the robot are mid-line 
 following (described in Section 5.3) in the corridors, go to the center of free 
 space (see Section 5.4) when doors are detected with the probabilistic method 
 depicted in Section 5.5, and go out the office room, which is the 
 following/trailing of the reverse trajectory of the go to the center of free space 
 action. 
 

• Transition Function 
 

 The transition function  
 

)'()',,( 1 aAsSsSPsasT ttt =∧=== +  
  
 calculates the probability of being in the world state 's  assuming that the 
 previous world state was s  and the robot executed action a . As previously 
 mentioned, the states, in which the robot can be, are the offices, and the 
 corridors. To each fingerprint of a place, an indoor environment structure and a 
 door situation is associated during map building. For each action a  the 
 probabilities of the transition function are calculated experimentally, and they 
 are expressed as follows: 

 
 

 s statefrom stransition of number the
 s' stateto  s statefrom stransition of number thesasT =)',,(  

 
 

• Set of Observations O 
 

 The set of observations O is composed of the fingerprints of places generated 
 by the robot in the environment. These observations are very distinctive since 
 distinctiveness is one of the main characteristics of the fingerprints of 
 places. An observation contains information given by the extereoceptive 
 sensors and designates a subset of the world state. 
 
 
 

(6.5)

(6.6)
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• Observation Function 
 

 The information for the observation function OS within the topological 
 framework is given by the fingerprint matching algorithm, described in  
 Chapter 4.   
  

 The probabilistic observation function OS is given as follows: 
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 where GA  gives the probability of matching between two fingerprints and it is 
 calculated with the global alignment with uncertainty algorithm described in 
 Chapter 4, and Z  is the normalization factor. The obsf  is the observed 
 fingerprint and imapf _  is the map fingerprint, corresponding to the i -node. The 
 normalization factor Z  is described as: 
 

∑
∈ +

=
Ss simapobs ffnmentGlobalAlig

Z
1),(

1

__

 

 
6.3.4 Control Strategy  
 
The computation of an optimal POMDP control strategy for large environments is 
computationally intractable. In order to obtain sub-optimal solutions, simple heuristic 
control strategies are proposed [Cassandra96]. An example of such strategy is the most 
likely state (MLS). This means that the world state s  with the highest probability is 
found and the action a  that is optimal for that state is executed. However, in this 
dissertation, the entropy of the probability distribution over the states of the topological 
map is used. The entropy of a probability distribution p is: 
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where 0log =ss pp  when 0=sp . The lower the value is, the more certain the 
distribution is. When the robot is "confused", the entropy is high. So the POMDP is 
confident about its state if the entropy is smaller than a fixed threshold: 
 

,)( ψ<pH  
 
where ψ  is the threshold experimentally calculated. When the robot is confident the 
action a  that is optimal for that state is executed. Otherwise if the POMDP is 
unconfident about its state the robot does mid-line following if the preceding action was 
mid-line following and go out the office room, if the previous action was go to the 
center of free space. The robot tries to reach and follow the corridor where it expects to 
find more information. 
 
 

(6.7)

(6.9)

(6.10)

(6.8)
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6.3.5 Map Update 
 
While navigating in the environment, the robot first creates and then updates the global 
topological map. By using a POMDP (Partially Observable Markov Decision Process), 
a discrete approximation of a probability distribution over all possible poses in the 
environment is computed. 
 
The entropy (see Equation (6.9)) of a probability distribution is used here. Therefore, 
the strategy of updating the map will be the following:  
 

• When the entropy of the belief state is low enough, the map will be updated and 
so the fingerprint and the uncertainty of the features will also be updated. 

 

• If the entropy is above a threshold ψ , then the updating will not be allowed, and  
the robot will try to reduce the entropy by continuing the navigation with 
localization. 

 

Similar to [Tomatis03], when the robot feels confident concerning its state, it can 
decide if an extracted feature is new by comparing the observed fingerprint to the 
fingerprint from the map, corresponding to the most confident state. This can happen 
either in an unexplored portion of the environment, or in a known portion where new 
features appear due to the environmental dynamics. The features from the fingerprint 
come with their extraction uncertainty featureu . When a feature is re-observed, the 
uncertainty of the feature from the map fingerprint is weight averaged with the 
uncertainty of the extracted one. The weight depends on the type of feature. Since the 
extraction of features with the laser scanner is more robust than the ones extracted with 
the camera, a higher weight is given to them. In our case, we choose to represent that as 
follows: 
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Otherwise, if the robot does not see an expected feature the uncertainty is decreased. 
The following equation expresses our choice for decreasing the uncertainty of a feature: 
 

1.01____ −= −tmapfeaturetmapfeature uu  
 

When the uncertainty of a feature from a map fingerprint is below a minimum 
threshold, than the feature is deleted, allowing in this way for dynamics in the 
environment. 
 
 
6.3.6 Closing the Loop 
 
One fundamental problem in SLAM is the identification of a place previously visited, if 
the robot returned to it. This is known as the closing the loop problem since the robot’s 
trajectory loops back on itself. Thus, for topological maps, this means that if a place 
(i.e. a node) has been visited before, and the robot returns to it, the robot should detect 
it (see Figure 6.4).  

(6.11)

(6.12)
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Contrary to other methods used for solving this problem, based usually on the 
perception, loops are identified and closed with the help of the localization techniques. 
In order to accomplish consistency of the topological map, a method similar to the one 
described in [Tomatis03] is used. In this work the method employed is a non-explicit 
loop closing algorithm. Our loop closing method is based on the localizer (i.e. the 
POMDP). The robot is moving through the environment and incrementally builds the 
topological map (see Section 6.3.1.2). As soon as the robot returns in an already visited 
place (i.e. node) the probability distribution potentially should split up. Two candidates 
hypotheses should appear: one for the new place (i.e. node) currently created by the 
robot (e.g. in Figure 6.4, node Q) and another one for the previously created node 
already present in the map (e.g. in Figure 6.4, node A). As soon as the POMDP is 
unconfident, the algorithm tracks the two highest probability distributions showing that 
the distribution diverged in two peaks. A loop is thus identified if the probability 
distribution given by the localizer converges in two peaks that move in the same 
direction. In order to detect where the loop was closed, the two hypotheses are 
backtracked with localization until a single one remains. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 6.4: Loop Closing Problem. The robot starts in place A and after moving 
through the environment arrives in place Q. The question to answer is: Has the robot 

returned to an already visited place or not? (i.e. Is place A equivalent to place Q?) 
 
 
6.4 Experimental Results 
 
The approach for topological SLAM using the fingerprints of places technique was 
implemented and evaluated in various real world indoor and outdoor environments. In 
this section some of the indoor experiments carried out with the BIBA robot (see 
Figure 1.2(a)), and the experiments for outdoor topological mapping using the 
“SMART” vehicle (see Figure 1.2(b)) are presented. Both mobile platforms (indoor and 
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outdoor) are equipped with two 180° laser range finders and an omni-directional 
camera.  
 

The first set of experiments demonstrates the robustness of the mapping module in two 
indoor real world scenarios and the mapping of urban outdoor environments. In 
particular, it illustrates the construction of distinctive and compact maps. In further 
experiments described in this section, the ability of the fingerprint-based localization 
method to globally localize the mobile robot on a map is shown. Closing the loop 
problem is also tested and validated through experiments. 
 
 
6.4.1 Mapping Indoor Environments 
 
The first indoor experiment was conducted in a portion of our institute building shown 
in Figure 6.5 and the second experiment was performed in the EPFL campus  
(see Figure 6.6(a)). The first test setup was the following: the robot started at the point 
S and ended at the point E as illustrated in Figure 6.5, the distance traveled being of 
75m. For the second test the robot traveled a distance of 67m. While the robot explored  
the environment, it recorded, at every Δd (distance) (e.g. in our case  
d =15cm), data readings from sensors (i.e. an image from the omni-directional camera 
and a scan from the laser scanner) in order to extract the fingerprints.  
 

The robot had a mid-line following behavior in the hallways and center of the free 
space behavior in the open spaces. As explained in a previous chapter (see  
Section 5.4), it is assumed that the position in the room with the maximum free space 
around it is the one with the highest probability of extracting numerous and 
characteristic features. This ensures high distinctiveness of the observation. The map 
building process was performed off-line.  
 

The threshold θ, defined as the maximum allowable dissimilarity and used for 
automatic mapping (see Section 6.3.1.2) is calculated experimentally. It is calculated 
for a small portion of the environment (i.e. 5 m), so that the map obtained matches the 
real structure of the environment. Once this threshold is determined, it is fixed for the 
rest of the indoor experiments.   
 
 
6.4.1.1 Results 
 
Figure 6.5 shows the topological map obtained by the system in the first test 
environment (i.e. in our laboratory), superimposed on an architectural sketch of the 
environment. The fingerprints used for this representation contain just the vertical 
edges and the corners as features. The color patches are not included because they are 
very sensitive to changes in illumination present in our case. The resulting map is 
composed of 20 nodes as shown in the Figure 6.5. Each node is represented by a mean 
fingerprint which is an aggregation of all the fingerprints composing the respective  
node. Typically, the nodes are positioned in the rooms and in the hallway. The offices 
are quite small and so the fingerprints that constitute the measurement points within the 
same room are very similar. A single node per room is thus enough. Four cases merit 
some additional discussion. The first special node is the one in-between Room 2 and 
Room 3. This node is justified because a door that connects the two hallways is  
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Figure 6.5:  (a) Floor plan of the first environment where the experiments have been 
conducted. The robot starts at the point S and ends at the point E. The trajectory length 

is 75 m. During this experiment, the robot collected 500 data sets (i.e. images and 
scans) from the environment. The extracted topological map is superimposed on an 
architectural sketch of the environment. (b) The extracted topological map given by 

our method, superimposed on the raw scan map. 

Raw Scan Map 
(for reference only) 

Coffee Room 

Bill’s Room Corridor 

(a) 

(b) 
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present. Another special node is introduced in the hallway between Room 4 and Room 
5. The robot detected important changes in the environment due to the vertical pillar 
present in the corridor. Another node that deserves attention is the hallway node 
between the Room 7 and Room 8. The door of Room 8 is opened into the hallway, 
obstructing the view of the robot and making the environment very different in front 
and behind the door. A new node is therefore automatically introduced by the mapping 
system. The distance in the corridor between Room 8 and the end point E is quite 
significant. Since the robot detects distinguishing features due to the changes in this 
portion of the environment, a new node specifying this is required. The doors of some 
rooms remained closed at the time of experimentation; this explains why no node is 
present in front of the respective rooms (see Figure 6.5).  
 

Figures 6.6(a) - (b) show the second test environment with the corresponding 
topological map, formed using the approach outlined in this work. The mapping system 
added a new node automatically each time a very distinctive measure (i.e. distinctive 
fingerprint) was encountered. The graph-like map thus obtained contains 8 nodes, as 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.6:  (a) The second test environment with the trajectory traveled by the robot. 
(b) The map of the second test environment with the graph representing the topological 

map. 

(a) 

Raw Scan Map 
(for reference only) 

(b) 
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shown in Figure 6.6(b). The same threshold used for the first test was employed here 
also, indicating the robustness of the overall method. The representations thus obtained 
(see Figure 6.5 and 6.6(b)) reproduce correctly the structure of the physical space, in a 
manner that is compatible with the topology of the environment. They also verify the 
consistency of the map and permit a distinctive modeling of it. It is important to 
mention that the maps are obtained by using only locally distinctive features 
composing the fingerprints and not by using the indoor structure of the environment 
(e.g. u-turn, x-crossing, etc). 

 
 

6.4.2 Mapping Outdoor Environments 
 
Compared to indoor environments, urban outdoor environments present many 
challenges for an autonomous vehicle. Coarse localization is often available from GPS. 
Most of the time, it is more useful to know the position of the robot with respect to 
buildings, trees, intersections, etc., than the exact latitude and longitude. In order to 
validate and to show the robustness of our approach, the method was also tested in an 
outdoor environment. The approach was tested in a part of the EPFL campus 
(structured environment), shown in Figure 6.7, on a 1.65 km of trajectory. The system 
mounted on the “SMART“ vehicle acquired data, both from the lasers and 
omnidirectional camera every 110 ms.   
 
 
6.4.2.1  Results 
 

A new threshold for outdoor environments was calculated experimentally in a small 
portion of the campus, in a similar way as for the indoor environments (see  
Section 6.4.1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.7:  The outdoor test environment (a part of the EPFL campus) with the 
trajectory of 1.65 km long traveled by the Smart vehicle. The magnifying glass 
represents the part of the environment used for the outdoor topological map 

exemplification (see Figure 6.8). 
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Different thresholds can be used in function of the granularity of the environment that 
it is desired. High granularity maps, with numerous nodes, may be obtained by setting 
small thresholds. Alternatively, setting high values for the threshold yields maps with 
fewer nodes (low granularity). The outdoor threshold for obtaining high granularity 
maps is the same as the one used for indoor environments. For getting maps with fewer 
nodes, the outdoor threshold is set three times bigger than the indoor threshold. A map 
composed of 209 nodes for a high granularity is obtained and a map of 64 nodes 
containing only the big changes in the environment (i.e. intersections, new buildings, 
etc) is found. A small example is depicted in Figure 6.8, which represents a low 
granularity topological map obtained for a 200 m section of the environment (i.e. the 
zoomed view of the region under the magnifying glass shown in Figure 6.7). The map 
contains 7 nodes. 
 

It can be noticed that the nodes are usually placed in front of buildings, at the crossings 
and when "big" changes occur (e.g. a building disappears from the field of view of the 
vehicle and driving signs, lamp-spots and trees appear). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6.8:  The low granularity outdoor topological map superimposed on an 
architectural sketch of a part of the EPFL campus. This part of the environment 

represents the zoomed of the rectangle shown in Figure 6.7. 
 
The map thus obtained for the entire trajectory shown in Figure 6.7 is compatible with 
the structure of the outdoor environment, taking into account the trees, the buildings 
and the lamp-posts.  
 
 
6.4.3 Indoor Topological Localization with POMDP 
 
The quality of the topological maps obtained with our fingerprint-based technique  
(see sections 6.4.1 and 6.4.2), can be evaluated by testing the localization on it. 
Localization experiments were conducted so as to show this. To test the localization, 
more than 1000 fingerprint sample, acquired while the robot was traveling new paths of 
250 m in the indoor environments shown above (see Figure 6.5 and 6.6 (a)), were used 
to globally localize the robot with the POMDP. A mission is considered successful if 
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the place found, which corresponds to the world state with the highest probability, is 
the same with the correct node in the real world.    
 
 

TABLE 6.1: Summary of the indoor localization experiments. 
 
 
 

 
 
 
 
 
 
 
The results are summarized in Table 6.1. It can be noticed that the results with the 
POMDP localization have given for the set of scenarios tested in this work a 
percentage of successful matches of 100%. The kidnapping problem (i.e. recovering 
from a lost position – the robot thinks that it is in a position where it is not) has also 
been tested. This was performed seven times and the robot succeeded to recover all the 
seven times, after one or two steps because of the very distinctive observations that 
corresponds to the fingerprints. 
 
 
6.4.4 Closing the Loop 
 
The localization with POMDP is used for identification of loops. As explained earlier, 
the robot moves through the environment and incrementally builds the topological map. 
The loop closing problem was tested 5 times in different situations within the 
environment. The robot succeeded to close the loop in all the situations. Figure 6.9 
shows only a simple example that is explained below. 
 

In Figure 6.9, it can be noticed that the robot started in the corridor, in point S. It 
traveled in the corridor till the door that separates the two hallways was detected (i.e. 
important change into the environment - node N1), continued in the corridor (i.e. node 
N2), then entered and went out the Room 3 (i.e. node N3). Once it returned in the 
corridor, the robot turned left and entered in an already visited place, corresponding to 
node N2. The robot temporarily creates a new node N4. As soon as the robot returned 
in an already visited place, the POMDP became unconfident and the probability 
distribution divided in two possible candidate states. Two hypotheses appeared: one for 
the new place (i.e. node N4 circled in red on Figure 6.9) currently created by the robot 
and another one for the previously created node already present in the map (i.e. node 
N2). The automatic mapper is turned off. The robot moved toward node N1 and labels 
it at node N5. Node N5 was very similar to node N1, and the correct match is made. A 
loop is thus identified if the probability distribution given by the localizer converges in 
two peaks. In order to detect where the loop is closed, the automatic mapping system is 
turned off and the two hypotheses are backtracked with localization until a single one 
remains. In the present case, this occurred when node N5 was detected. At that point the 
robot realized that node N4 is node N2 and that node N5 is node N1. Thus, the loop was 
closed correctly.  
 

Fingerprints 1024 samples 
Distance Traveled 250 m 

Scenarios 10/10 
Kidnapping 7/7 

Fingerprint Matching 81% 
POMDP localization 100% 
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In order to make use of the information obtained when a place is revisited, the map is 
updated (see Section 6.3.5). The nodes N1 and N2 are updated with the data brought by 
the revisited nodes N5 and N4, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.9: Loop Closing: Shows the directed path that the robot traveled. The robot 
starts in point S. It can be noticed that the robot arrives in a visited place (i.e. node N4) 

once it goes out the office (ROOM 3) and goes to the left, re-visiting again node N4. 
 
 

As explained earlier, due to the fact that the offices are quite small, the fingerprints of 
places are very similar, and thus a single node per room is enough. Since a node 
contains a posterior knowledge about its environment and is the aggregation of all the 
fingerprints of places between the last node and the current place where an important 
change into the environment occurred, closing the loop problem does not appear in 
these cases (i.e. when one node per office is sufficient). 
 
 
6.5 Discussion and Limitations 
 
This work presents a topological SLAM system based on the fingerprints of places. As 
shown in previously described chapters, fingerprints of places represent the 
environment in a very distinctive fashion. Localization and mapping approaches are 
both based on this concept. It was shown that the fingerprint-based approach for 
mapping gives a consistent and distinctive representation of the environment. The 

N1 

N2 
N3 

Room 7 Room 7

S
N1N2 

N3 

N4 N5

N6

N7 

ROOM 3 

ROOM 2 
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incremental mapping system can be seen in the same time advantageous and 
disadvantageous due to the heuristic used. The positive part is that once we have the 
heuristic (i.e. the threshold) various kinds of environments can be mapped (i.e. indoor, 
outdoor). The hard part is to determine the heuristic. Since in our method the heuristic 
is previously tuned for each type of environment, an improvement would be the 
automatic learning of this heuristic. An adapted methodology to do that would be 
reinforcement learning. The POMDP for localization shown here improves the results 
obtained with the approaches shown in Chapter 4. Adding the motion of the robot 
enables to decrease further the pose uncertainty to a level that could never be reached 
by fingerprint matching alone. A success rate of 100% was obtained for the tests 
performed in this work. However, the approach has to be extensively tested in different 
types of environment in order to make a real estimation of the quality of the method.  
 
 
6.6 Summary 
 
This chapter presented a new technique for topological SLAM based on the fingerprint 
for both localization and mapping. The fingerprint provides a compact and distinctive 
methodology for space representation and place recognition – it permits encoding of a 
huge amount of place-related information in a single circular sequence of features. This 
representation is suitable for both indoor and outdoor environments.  
 

The experiments verify the efficacy and reliability of our approach. The topological 
maps thus obtained are very compact and distinctive. The indoor maps are compatible 
with the topology of the environment, verify the consistency of the map and permit a 
distinctive modeling of it. The outdoor maps reproduce correctly the structure of the 
physical space. The localization with POMDPs was also tested. The results were much 
better than the ones obtained in Chapter 4, as expected. The robot traveled 250m and a 
success rate of 100% was detected for the scenarios used in this work. The robot could 
also recover after kidnapping. Loop closing problem has also been tested and it was 
shown how this can be done at the localization level with POMDPs.  
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7  

Conclusions 

“Science never solves a problem without creating ten more.” 
  
George Bernard Shaw (1856-1950) 

 
This chapter is divided into three parts: a review of the major ideas and contributions 
composing this thesis, a study that shows the counterpart of our topological navigation 
system based on fingerprints of places in neurobiology, similarities between 
hippocampal place cells and the fingerprints of places, and finally an outlook on future 
works. The latter will try to highlight new directions that will enable a robot to move 
and act in human-centered environments. 
 
 
7.1 Review and Contributions 
 
This thesis is based on the conviction that distinctive space representation, multi-modal 
perception, and probabilistic SLAM, are all needed in order to obtain a robust and 
reliable framework for navigation. The topological navigation system designed in this 
dissertation is suitable for fully autonomous mobile robots, operating in structured 
indoor and outdoor environments.  
 

A multi-sensory perception system is used in this work, since individual sensors suffer 
from robustness limitations. The resulting measurement of the world state is thus much 
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more reliable. The sensors used in this work include wheel encoders for odometry and 
two extereoceptive sensors composed of a laser range finder that give a 360° view of 
the environment and an omnidirectional camera.  
 

Usually sensors yield an enormous amount of raw data and it is difficult to process this 
as it is. In the context of navigation, extracting significant, robust and stable features 
from sensory data is very important. The different features extracted from the 
extereoceptive sensors (i.e. corners, vertical edges, color patches, etc.) are fused and 
combined into a single, circular, and distinctive space representation called a 
fingerprint of a place. This representation is adapted for topological navigation and is 
the foundation for the whole dissertation. 
 

The robot localization issue is a very important problem in making truly autonomous 
robots. Localization is the task of determining robot’s position with respect to some 
underlying representation. Several topological localization techniques based on the 
fingerprint approach are presented in this work. In contrast to most of the previously 
presented methods, our fingerprint-based methods combine multimodal perceptual 
information and perform well both in indoor and outdoor environments. Localization 
on a fingerprint-based representation is reduced to a problem of fingerprint matching. 
Two of the methods make use of the Bayesian Programming (BP) formalism and the 
two others are based on dynamic programming. 
 

Autonomous robot map generation warrants suitable exploration tools so as to enable 
the robot to discover its environment. Different behaviors and methods used to explore 
indoor environments are depicted. They include wall following, mid-line following, 
center of free space of a room, door detection, and environment structure identification. 
 

To navigate reliably in indoor or outdoor environments a mobile robot must know 
where it is. For this, the robot needs to construct or to maintain a spatial representation 
of the environment. The main objective of this work is to enable the navigation of an 
autonomous mobile robot in structured environments without relying on maps a priori 
learned and without using artificial landmarks. A new method for incremental and 
automatic topological mapping and global localization with Partially Observable 
Markov Decision Processes (POMDP) using fingerprints of places is described. The 
mapping method presented in this dissertation uses fingerprints of places to create a 
topological model of the environment. The construction of a topological mapping 
system is combined with the localization technique, both relying on fingerprints of 
places, in order to perform Simultaneous Localization and Mapping (SLAM). This 
fingerprint-based approach yields a consistent and distinctive representation of the 
environment and is extensible in that it permits spatial cognition beyond just pure 
navigation. 
 

All these methodologies have been validated through experiments.  Indoor and outdoor 
experiments have covered more than 2 km. The fingerprints of places proved to 
provide a compact and distinctive methodology for space representation and place 
recognition – they permit encoding of a huge amount of place-related information in a 
single circular sequence of features. The indoor maps are compatible with the topology 
of the environment, verify the consistency of the map and permit a distinctive modeling 
of it. The outdoor maps reproduce correctly the structure of the physical space. The 
localization with POMDPs was also tested. The robot was able to localize itself all the 
times and it could also recover after kidnapping and closing the loops. 
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7.2 The Hippocampal Place Cells and the Fingerprints of 
Places: Spatial Representation Animals, Animats and Robots 
 
In all our daily behaviors, the space we are living and moving in plays a crucial role. 
Many neurophysiologists dedicate their work to understand how our brain can create 
internal representations of the physical space. Both neurobiologists and roboticists are 
interested in understanding the animal behavior and their capacity to learn and to use 
their knowledge of the spatial representation in order to navigate. The ability of many 
animals to localize themselves and to find their way back home is linked to their 
mapping system. 
 

The seminal discovery of place cells, by O’Keefe and Dostrovsky [O’Keefe71], in the 
rat hippocampus – cells whose firing pattern is dependent on the location of the animal 
in the environment – led to the idea that the hippocampus works as a cognitive map of 
space [O’Keefe78]. It was shown in [Cho98] (for a review see e.g. [Redish99]) that the 
lesion of the hippocampus impairs the performance of rodents in a wide variety of 
spatial tasks indicating a role of the hippocampus in map-based navigation.  
 

The framework for topological SLAM (Simultaneous Localization and Mapping) 
proposed in this thesis organizes spatial maps in cognitive graphs, whose nodes 
correspond to fingerprints of places, and may be seen as a possible mechanism for the 
emergence of place cells. The computational model describes how a mobile agent can 
efficiently navigate in the environment, by using an internal spatial representation 
(similar to some extent to hippocampal place cells). This model builds a topological 
(qualitative) representation of the environment from the sequence of visited places. 
Many vision based systems for place fields using metric information have been 
extensively discussed in literature (e.g. [Arleo00], [Hartley00] and [Kali00] are just 
some of them). 
 

It was possible to see all along this thesis that a fingerprint is associated to each 
distinctive place within the environment. Thus, the result given by the fingerprint 
matching algorithm is strongly correlated (linked) to the location of the mobile agent in 
the environment, giving high or the highest probability to the correct place associated to 
the fingerprint. The firing of place cell units can be seen as the manifestation of 
fingerprint matching.  The closer to the center of the place field the animal is, the 
higher the rate of neural firing. Similarly, the nearer the new observation of the robot 
(i.e. the new observed fingerprint) will be with respect to the registered (learned) place 
(i.e. a known fingerprint), the higher the probability of the mobile agent of being in an 
already explored place. 
 
The methodology presented in this thesis can efficiently create representations of places 
in an environment and locate the robot/animat in the environment. The place cells in 
the hippocampus accomplish the same task: the activation of a place cell, or perhaps 
better, of an assembly of place cells connected to each other, indicates that the 
hippocampus is locating the animal in a certain place.  It can be suggested here that the 
hippocampus may indeed extract place from its sensory input by constructing 
fingerprints of places, similar to that described in this work. Indeed, in environments 
rich in landmarks, or features, the hippocampal cognitive map is dominated by the 
sensory inputs (see e.g. [O’Keefe96], [Gothard96], [Battaglia04]). Changing the 
relative position of landmarks can cause a complete change in place cells activity 
(“remapping“) so that a new set of place cells gets assigned to a given place, just as it 
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would be the case for our fingerprint algorithm [Cressant02].  Many theoreticians have 
proposed models of place cells based on visual inputs, where the visual stream is 
encoded in metric terms, that is, in terms of the distances between the landmarks, and 
between each landmarks and the agent (e.g. [Arleo00], [Hartley00] and [Kali00]). 
Fingerprint representations are based on the relative angular position of the landmarks 
from a given point of view, a much simpler and robust measure, and may be able to 
explain many of the experimental evidences on place cells, at least those in which 
multiple landmarks were available to the animal.  
 

For the brain to perform the fingerprint matching, several building blocks are 
necessary: first, the identification of the landmarks, which may take place for example 
in the inferotemporal cortex, second, the determination of the relative position of 
multiple landmarks, which probably takes place in the parietal lobe ([Cressant02], 
[Poucet03]). The hippocampus may gather this information and produce a unitary 
representation (which would correspond to a fingerprint), presumably in terms of an 
attractor configuration of the CA3 module (which is very rich in recurrent synaptic 
connections and is thought to work as an attractor network module).  At the moment of 
localization, the current input may be fed into the attractor dynamics, and, if the 
fingerprint matches one of the previously stored ones, the corresponding attractor is 
recalled. In the case of a no-match, the attractor dynamics will not produce an attractor 
state, and this fact may be use to signal a novel situation, and trigger the plasticity 
processes that allow the storage of a new memory.  
 

This vision of hippocampal space representations highlights the role of the 
hippocampus as a processor of combinatorial information, whose importance 
transcends the purely spatial domain. In the case of space computation the 
hippocampus would process combinations of landmark identity and relative position 
information, and produce an index, which can be attached to a physical location.  It is 
important to mention here that in our scheme the place representation does not entail 
any notion of Euclidean space, contrarily to what hypothesized in [O’Keefe78] and in a 
number of more recent works (see review in [Redish99]). 
 

In our view, the computation of places from sensory input (through a fingerprint-like 
procedure), is integrated by the idiothetic information, which plays an important role 
especially in conditions in which only poor sensory input is available (for example, in 
the dark), and  to disambiguate situations of perceptual aliasing (see e.g. [Skaggs98]). 
 

The topological navigation framework based on fingerprints of places presented in this 
dissertation, underlies the interest of mutual inspiration between robotics, biology and 
neurophysiology. Our computational model finds a counterpart in neurobiology, being 
similar with the hippocampus, which plays a crucial role in spatial representation. The 
proposed spatial representation is an incrementally learned representation, based on 
fingerprints of places; the fingerprint place modeling being comparable with the place 
coding model in the animals (rats) hippocampus.  
 

This study is more developed and detailed in [Tapus05c]. 
 
 
7.3 Open Issues 
 
Some questions concerning the topological navigation of mobile robots have been 
answered by the work presented in this dissertation, but many also have been raised by 



7.3   Open Issues  123 

 

it. As George Bernard Shaw (1856-1950) told us “Science never solves a problem 
without creating ten more.” Therefore, some directions for future work are highlighted 
here.  
 

The representation of space is a crucial point. As mentioned and demonstrated along all 
this work, fingerprints of places permit encoding a huge amount of place-related 
information in a single circular sequence of features. In this work, low-level features 
(such as vertical edges, horizontal lines) have been used. An interesting extension of 
the model is the addition of other modalities and features to the fingerprint framework 
(e.g. auditory, smell, or higher level features such as doors, table, fridge, etc.). This will 
help to improve the reliability and accuracy of the method and to add semantics to it. 
The first attempts in constructing semantics maps are depicted in [Brezetz94], 
[Tapus05a] and [Limketkai05]. 
 

An interesting question that may rise is: how robust is the topological navigation 
system presented in this work? Is the mapping system capable of coping with dynamics 
in the environment? The experiments depicted here have already shown that the robots 
can cope with variation in the world. It was also proven that the fingerprint matching 
algorithms can take into account small variations in the fingerprints of places 
sequences. However, more studies and experiments for the mapping system are 
required and an extension of the work presented in [Martinelli03a] (i.e. a multi-level 
SLAM) would be enriching.   
 

The undeniable trend of research in robotics is to endow robots with the capability of 
understanding the world we are in, thus permitting them to help us and to be a part of 
our lives. An ideal companion-robot should be designed to feature sufficiently complex 
cognitive capabilities permitting it to understand and to interact with the environment, 
to exhibit social behavior, and to focus its attention and communicate with people. 
 

This makes robotics particularly exciting, with numerous interesting problems and 
fascinating applications awaiting our solutions and discoveries. 
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Appendix A  

Bayesian Programming – Basic 

Concepts 
 
Since Chapter 4 and Chapter 5 make use of the Bayesian Programming formalism, a 
short overview of this basic concept is given here. This appendix first introduces the 
concepts, postulates, definitions, notations and rules that are necessary to define a 
Bayesian program and then addresses the Bayesian Programming concept in detail. It is 
interesting to show that some simple rules (basic probability theory) and the formalism 
presented here are sufficient to form a unifying framework for most of the probabilistic 
approaches found in the literature. This appendix summarizes the works described in 
[Bessière03], [Lebeltel04], [Mekhnacha00] and [Bellot03].  
 
 
A.1  Fundamental Definitions 
 
A.1.1 Proposition 
 
The first concept described is the familiar notion of a logical proposition. Propositions 
are denoted by lowercase alphabets. They may be composed of propositions 
themselves. This is possible using the standard logical operations - conjunction, 
disjunction and negation. In notational terms, a∧b and a∨b respectively represent the 
conjunction and disjunction of two propositions a and b. Also ¬a represents the 
negation of a proposition a. 
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A.1.2 Variable  
 
The notion of discrete variable is the second concept that it is required. Variables are 
denoted by names starting with an uppercase letter.  
 

By definition, a discrete variable is a set of logical propositions such that these 
propositions are mutually exclusive (for all i,j with i≠j, ji yx ∧ is false) and exhaustive 
(at least one of the propositions ix  is true). ix  stands for «variable x  takes its 

thi value». ⎣ ⎦X  denotes the cardinality of the set X  (the number of propositions ix  ).  
 

The conjunction of two variables X andY , denoted YX ∧ , is defined as the set of  
⎣ ⎦ ⎣ ⎦YX ×  propositions ji yx ∧ . YX ∧ is a set of mutually exclusive and exhaustive 
logical propositions. As such, it is a new variable. Of course, the conjunction of N  
variables is also a variable and, as such, it may be renamed at any time and considered 
as a unique variable in the sequel. 
 
 
A.1.3 The probability of a proposition 
 
To be able to deal with uncertainties, probabilities are attached to propositions.  
 

Let consider that, to assign a probability to a proposition a , it is necessary to have at 
least some preliminary knowledge, represented by a proposition π . Consequently, the 
probability of a proposition a  is always conditioned, at least by π . For each different 
π , ) . ( πP  is a process that assigns to each proposition a , an unique real value )( πaP  
in the interval [ ]1,0 .  
 

The same reasoning will be followed so as to calculate the probabilities of the 
conjunctions, disjunctions and negations of propositions, denoted, by 

)( πbaP ∧ , )( πbaP ∨ , and )( πaP ¬ , respectively.  
 

The probability of proposition a  conditioned by both the preliminary knowledge π  
and some other proposition b  is denoted by )( π∧baP .  
 

For simplicity and clarity, probabilistic formulae use variables in place of propositions. 
By convention, each time a variable X  appears in a probabilistic formula )(XΦ , it 
should be understood as )(, ii xXx Φ∈∀ . For instance, given three variables ,,YX  and 
Z , )()( ππ XPZYXP =∧∧ stands for: 
 
 

Xxi ∈∀ , Yy j ∈∀ , Zzk ∈∀  

)()( ππ
ikji xPzyxP =∧∧  

 
 
 
 

(A.1)
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A.2  Inference rules and postulates 
 
This section contains elementary inference rules and postulates needed to carry out 
probabilistic reasoning. They include: the conjunction postulate, the normalization 
postulate, the disjunction rule, and the marginalization rule and are described below. 
 
 
A.2.1 The conjunction postulate (Bayes theorem) 
 
The probability of the conjunction of two variables X andY  can be computed 
according to the conjunction rule: 
 

)()()()()( πππππ ∧×=∧×=∧ YXPYPXYPXPYXP  
 
This rule is also known in the form of the so called Bayes theorem: 
 

)(
)()(

)(
π

ππ
π

YP
XYPXP

YXP
∧×

=∧  

 
However, in this work the first form is preferred, which clearly states that it is a means 
of computing the probability of a conjunction of variables according to both the 
probabilities of these variables and their relative conditional probabilities. 
 
 
A.2.2 The normalization postulate 
 
The normalization rule states that the sum of the probabilities of X and ¬X is one. 
 
 

1)()( =¬+ ππ XPXP  
 
 
A.2.3 The disjunction rule 
 
The utilization of conjunction and normalization postulates permits the derivation of 
the disjunction. This is states as: 
 

)()()()( ππππ YXPYPXPYXP ∧−+=∨  
 
 
A.2.4 The marginalization rule 
 
A very useful rule, called the marginalization rule, may be derived from the 
normalization and conjunction postulates.  
 
This rule is given by the following formula: 
 

(A.2)

(A.3)

(A.4)

(A.5)
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∑ =∧
X

YPYXP )()( ππ  

 
This rule can be derived as follows: 
 
 

)()()()()()( ππππππ YPYXPYPYXPYPYXP
XX X
∑∑ ∑ =∧×=∧×=∧  

 
 
 
 
 
 
A.3 Bayesian Programming Formalism 
 
In this section, the Bayesian Programming formalism is presented. Using the very 
simple postulates and rules described earlier, it is possible to define a generic formalism 
to specify probabilistic models. This generic formalism is known as the Bayesian 
Program (the technique is referred to as Bayesian Programming). The Bayesian 
Programming formalism enables the usage of a uniform notation and provides a 
structure to describe probabilistic knowledge and its use. 
 
 
A.3.1 Structure of a Bayesian Program 
 
The elements of a Bayesian Program are illustrated in Figure A.1. A Bayesian Program 
is divided in two parts: a description and a question.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.1: Structure of a Bayesian Program 
 
A program is constructed from a description, which constitutes a knowledge base 
(declarative part), and a question, which restitutes via inference some of this knowledge 
(procedural part). A description is constructed in 2 phases: a specification phase where 
the programmer expresses his/her preliminary knowledge and an identification (or 
learning) phase where the experimental data are taken into account. Preliminary 
knowledge is constructed from a set of pertinent variables, a decomposition of the joint 
distribution into a product of simpler terms, and a set of forms, one for each term. 
Forms are either parametric forms or questions to other Bayesian programs. 

from 
conjunction rule

from 
normalization rule

(A.6)

(A.7)
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The components of the Bayesian Program are explained in detail in the following 
sections. 
 
 
A.3.2 Description 
 
The purpose of a description is to specify an effective method to compute a joint 
distribution on a set of variables nVVV ,,, 21 Κ , given a set of experimental data δ  and a 
preliminary knowledge π . This joint distribution is denoted as: 

).( 21 πδ ∧∧∧∧ nVVVP Κ  
 
 
A.3.3 Specification 
 
The specification phase is the most critical part for the programmer. During this phase, 
the preliminary knowledge, that is used as input to the description part and that results 
from a process on specific experimental data, is expressed. Three types of preliminary 
knowledge can be distinguished: the set of pertinent variables, the decomposition of the 
joint distribution into a product of simpler terms, and a set of forms. 
 
i. Structural Preliminary Knowledge – the choice of pertinent variables 

 
The structural preliminary knowledge is the preliminary knowledge permitting the 
definition of a set of variables nVVV ,,, 21 Κ  for the description. All the other variables 
are hence assumed to be non-pertinent for the considered problem. 
 

In robotics, these variables can be classified in three main sub-sets: 
• The extereoceptive and proprioceptive sensorial variables; 
• The driving variables 
• The internal variables, permitting the representation of the internal states 
of the robot or of the sensors. 

 
ii. Dependency Preliminary Knowledge – the choice of the decomposition of the 
joint distribution 
 
As previously mentioned, the description over the set of pertinent variables 

nVVV ,,, 21 Κ  aims to define the joint distribution ).( 21 πδ ∧∧∧∧ nVVVP Κ  This 
mathematical formula is a probability distribution over n  dimensions. The conjunction 
postulate (A.2) allows for the decomposition of this joint distribution into a product of 
simpler terms.  
 

Let’s take a small example of a joint distribution )( ZYXP ∧∧  composed of three 
variables ,,YX and Z . By applying the conjunction postulate (A.2), this joint 
distribution can be written as follows: 
 

)()()()( ZYXPZYPZPZYXP ∧××=∧∧  
 

(A.8)
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 In this, second step, the specification, also permits the expression of the independence 
and dependence relationships between the variables. The independence relationships 
allow for the reduction in the dimensionality of individual terms appearing in the 
decomposition. 
 

If in our previous example, the variables X  and Y  are supposed to be independent 
knowing the value of the variable Z , the expression become: 
 

)()()()( ZXPZYPZPZYXP ××=∧∧  
 
 
iii. Observational Preliminary Knowledge – the choice of parametric forms 
 
A parametric form is associated with each term appearing in the previously chosen 
decomposition of the joint distribution, a parametric form is associated. By initially 
making these choices (the steps given above), the values of the various probability 
distributions and the way they are modified is fixed.  
 

The parametric forms are usually standard probability distributions (e.g. the uniform 
distribution and the normal distribution). A question to another description can also be 
used as a parametric form, as a probabilistic sub-program (meaning that nesting a 
Bayesian Program is permissible or Bayesian Program can be recursive). 
 
 
A.3.4 Identification 
 
The parametric forms can contain free parameters, like the mean or the standard 
deviation in a Gaussian distribution. It is necessary to give numerical values to these 
parameters so as to finish the description. These numerical values can be obtained 
through a learning process or they can be a priori fixed by the programmer. 
  
 
A.3.5 Utilization 
 
Once the specification and the identification parts are fixed, the description is complete. 
The utilization part consists in the application of the description in order ro answer 
probabilistic questions. 
  
i. Question (definition) 

 
Asking a question consists of searching the probability distribution for a certain number 
of variables qε  from the description, knowing the values of the others variables cε , and 
ignoring the values of the third type of variables iε . Thus, a probabilistic question has 
the following form: 

 
),( nmlk vvVVP ∧∧∧∧ ΚΚ  

 
where { } 0,, ≠= lkq VV Κε , { } 0,, ≠= nmc VV Κε , and { }poi VV ,,Κ=ε  is the set of 
variables not included neither in the set qε , nor in the set cε . These three sets of 

(A.9)

(A.10)
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variables should be partitions of the set of pertinent variables in order to have a correct 
Bayesian Programming formulation. 

 
ii. Inference 
 
Any probabilistic question that has the form of the Equation (A.10) can be answered, 
by knowing the joint distribution )( 21 nVVVP ∧∧∧ Κ  and by applying the conjunction 
postulate and marginalization rule.  
 

Let’s first apply the Bayes rule: 
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By applying the marginalization rule, the denominator and numerator can be expressed 
in function of the known joint distribution, as follows: 
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This method can be computationally expensive due to the normalization with respect to 
the variables po VV ,,Κ  (Bayesian inference is in general NP-complete). Therefore, 
different simplification forms can appear during the inference phase. These 
simplifications can appear due to the independencies between the variables in the joint 
distribution. 
 
iii. Decision 

 
The result of the inference provides a probability distribution over the researched 
variables qε . This probability distribution uses the a priori knowledge of the 
programmer on the problem.  
  

In the field of robotics, this probability distribution can for example influence the 
variables directly controlling robot-motion. In order to control the robot, the values of 
these variables must be found. This problem takes the form of a decision-making 
problem. Many strategies can be conceived, but the simplest option is the choice of a 
value with the maximum probability or one that is chosen on the basis of a random 
selection performed on the distribution obtained. 
 
 
A.4  Simple Example: Sensor Fusion 
 
The following example is taken from the dissertation of Olivier Lebeltel [Lebeltel99]. It 
describes an experiment performed on a mobile robot, Khepera. This robot is equipped 
with eight infra-red sensors. The goal of this experiment is to determine the direction of 
the light source, in function of the output of the eight light sensors. 
 

(A.11)

(A.12)
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A.4.1 Bayesian Program Description 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.2: Example of a simple Bayesian Program: light sensors fusion 
 
 

• Pertinent Variables 
 
The pertinent variables chosen to solve this problem are: 

 The eight variables corresponding to the eight light sensors: 
,,,,,,, 6543210 LmLmLmLmLmLmLm  and 7Lm . The values of these 

variables are contained in the interval [ ]511,0 , where 0 corresponds to 
strong luminosity and 511 corresponds to diminished luminosity;  

 The variable characterizing the bearing of the light source: Lθ .  The 
values of this variables are in between -180°  and 180° and the step is of 
10°. 

 The variable designating the distance between the robot and the light 
source D . Its values belong to the following interval [ ]25,0 cm and the 
step is of 1 cm. 

 

These pertinent variables define the probability of the joint distribution: 
 

)( 710 DLmLmLmP L ∧∧∧∧∧ θΚ . 
 
• Decomposition 
 

Light source 

(A.13)
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The decomposition of the joint distribution is the job of the programmer and usually 
is not easy. In the case of this example, many decompositions of the distribution are 
possible. 
 

The programmer usually chooses the decomposition in function of some a priori 
knowledge of the system. In this example, it is assumed that the output of the light 
sensors can be modeled as a function of the position of the light source, this can be 
expressed as follows: )( DLmP Li ∧θ . 
 

The successive application of the conjunction postulate permits the joint 
distribution to be decomposed to the following form: 
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A strong conditional independence hypothesis is made here. It is clear that the read 
values of two sensors are not independent. However, it is assumed that two sensors 
are completely independent (i.e. no two sensory input are correlated in any way). 
Thus, each sensors reading is contingent only on  Lθ  and D . This information is 
incorporated into the source knowledge. Hence,  
 

)()( 01 DLmPDLmLmLmP LiLii ∧=∧∧∧∧− θθΚ  
   
This allows us to simplify the joint distribution (see Equation A.14) as follows: 
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• Parametric Forms 
 
 Because no a priori knowledge is available on the light source, the probability 
distribution  )( DP L ∧θ  is represented by a uniform distribution.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(A.14)

(A.15)
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Figure A.3: The mean value of the light sensor in function of the distance D  and 
the bearing Lθ  of the light source 

 
The different probabilities )( DLmP Li ∧θ  represent the output of a light sensor in 
function of the light source. A Gaussian distribution that depends on the light 
source and on the position of the sensor on the robot is chosen to represent it.  
Figure A.3 depicts the function permitting to calculate the mean of these Gaussian 
distributions in function of the light source. In this figure, the position of the sensor 
on the robot is not taken into account. This function is chosen on the basis of the 
documentation (manuals) of the light sensors. The standard deviation is fixed at a 
constant value (e.g. in this case it was fixed to 20) independent of the position of 
the light source. 
 
• Identification 
 
Since the sensor model is known, there are no free parameters and therefore there is 
no identification step. 
 
• Utilization 
 
In order to estimate the bearing of the light source, knowing the observation of the 
eight light sensors, the following question is asked: 
 

).( 70 LmLmP L ∧∧Κθ  
 
For this question, the inference gives: 
 

(A.17)
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Since the probability distribution )( DP L ∧θ  was represented as a uniform distribution, 
it is possible to simplify the above expression as: 
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where α  is the normalization constant. 
 
In order to compare the results of the sensor fusion with the results of the measure of 
the bearing with a single sensor, the eight following questions are asked: 
 

.7,,0),( Κ=iLmP iLθ  
 
For each of these questions the inference gives (only the example for i=0 is 
demonstrated here): 
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Since we represented the probability distribution )( DP L ∧θ  as a uniform distribution, 
it is possible to simplify this term. Thus, the inference result becomes: 
 
 

(A.18)

(A.19)

(A.20)

(A.21)
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The final inference result is: 
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where 0α  is the normalization constant. 
 
 
A.4.2 Results and Discussion 
 
Figure A.4 describes the results for the light source when the bearing angle .10°=Lθ  
The peripheral diagrams presents the results obtained by using a single sensor, the 
answers at the questions expressed in Equation (A.23). The central diagram describes 
the result of the sensors fusion, the distribution ).( 70 LmLmP L ∧∧Κθ  
 

The information given by each of the eight sensors is very weak. The result of the 
probabilistic fusion of the eight light sensors is great, it delivers a Dirac on the 10° 
position of the bearing angle.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(A.22)

(A.23)
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Figure A.4: The result of a sensor fusion for a light source with a bearing of 10° 
 

 
A.5  Summary 
 
The Bayesian Programming (BP) approach was originally proposed as a tool for robot 
programming (see [Lebeltel04]), but nowadays it is used in a wider range of 
applications ([Mekhnacha00] shows some examples). 
 
The Bayesian Programming and the probabilistic reasoning in general took a new 
dimension with the BIBA European project. One of the major goals of this project was 
the demonstration of the biological plausibility of the probabilistic inference at the 
microscopic level as well as macroscopic one. 
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Appendix B  

Glossary  
 

  
 
 
agent an entity or a computational process that senses its world 

and acts in it 
 
allothetic source allothetic sources of information provide external 

information about the environment. 
 
animat a robot that executes a mechanism described in the 

biological literature; in other words a robot that has a bio-
mimetic behavior 

 
Bayesian Programming a generic formalism that enables the usage of a uniform 

notation and provides a structure to describe probabilistic 
knowledge and its use 

 
behavior a control law that achieves and/or maintains some goal 
 
 
catadioptric system employs both mirrors and lenses in their optics for image 

formation; are usually used to provide a far wider field of 
view than is easily possible using lenses or mirrors alone. 

 
catoptric system makes only use of mirrors for image formation.  
 

cerebral cortex  is the outer layer of grey matter; is made up of 
    neurons and supporting cells (glial cells) and functions to 
    correlate information from many sources to 
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     maintain cognitive function (all aspects of perceiving, 
    thinking and remembering).  

cognitive graph topological representation 
 
 
dioptric system system that uses only lenses for image formation 
 
 
distinctiveness a utter dissimilarity 
 
 
dynamic programming solves an optimization problem by caching sub-problem 

solutions rather than recomputing them. 
 
equiangular mirror a mirror in which each pixel spans an equal angle 

irrespective of its distance from the center of the image 
 
extereoceptive sensor measures environment features such as distance, color 

and luminosity. 
 
fingerprint of a place is a circular list of features that the robot can perceive 

around it 
 
firing of place cells corresponds to a matching mechanism; the place cells 

fires maximally in a place field. 
 
hippocampus a complex neural structure consisting of gray matter; has 

a central role in the formation of memories and 
processing of spatial information  

 
hybrid map is an integration of both the metric and topological space 

representation paradigms. 
 
idiothetic idiothetic source yields internal information about the 

mobile agent’s movements (e.g. speed, acceleration, etc.). 
 
inferotemporal cortex is a region of the cerebral cortex 
 
 
localization is the task of determining robot’s position with respect to 

some underlying representation 
 
loop closing is the identification of a place previously visited, if the 

robot returns to it; this is known as the closing the loop 
problem since the robot’s trajectory loops back on itself. 

 
map representation  
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metric map   a map of the environment useful when it is necessary 
    for the robot to know its location accurately in terms of 
    metric coordinates (i.e. Cartesian coordinates).  
 
neurobiology the biological study of the nervous system or any part of 

it. 
 
neurophysiology the branch of physiology (i.e. the biological study of the 

functions of living organisms and their parts) that deals 
with the functions of the nervous system 

 
perceptual aliasing distinct locations within the environment appearing 

identical to the robot’s sensors 
 
place cell units whose firing pattern is dependent on the animal 

location in the environment; gives give a model of how 
spatial information is encoded at the neural level. 

 
place field is the part of the environment where a place cell fires or 

fires maximally 
 
proprioceptive sensor measures and monitors the internal state of a robot (e.g. 

motor speed, temperature, acceleration). 
 
reactive behavior a control law that relies on the immediacy of sensory 

information, linked directly to motor behavior without 
the use of any symbolic representation 

 
semantic map is a map that includes elements that give a meaningful 

representation; it consists of the relationship between 
different elements and what they represent. 

 
SLAM Simultaneous Localization and Mapping – is the 

construction of maps while the robot moves through the 
environment and the localization with respect to the 
partially built maps 

 
topological map a qualitative representation of the environment; it can be 

viewed as a graph of places, where at each node the 
information concerning the visible landmarks and the 
way to reach other places, connected to it, is stored 
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