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Abstract. Cognition and Reasoning with uncertain and partial knowl-
edge is a challenge for autonomous mobile robotics. Previous robotics
systems based on a purely logical or geometrical paradigm are limited in
their ability to deal with partial or uncertain knowledge, adaptation to
new environments and noisy sensors. Representing knowledge as a joint
probability distribution increases the possibility for robotics systems to
increase their quality of perception on their environment and helps them
to take the right actions towards a more realistic and robust behavior.
Dealing with uncertainty is thus a major challenge for robotics in a real
and unconstrained environment. Here, we propose a new formalism and
methodology called Bayesian Programming which aims at the design
of efficient robotics systems evolving in a real and uncontrolled environ-
ment. The formalism will be exemplified and validated by two interesting
experiments.

1 Incompleteness and Uncertainty in Robotics

One of the biggest challenge for autonomous mobile robotics is the navigation
in unknown or partially known environments, when noisy sensors are used and
where unexpected events happen. Even if recent research resulted in some very
nice demonstrations of autonomous navigation in dynamic environments, we are
still far from having concepts and algorithms that adapt to different environ-
ments and scale well with the complexity of the environment.

This paper suggests a generic approach based on the well-known Bayes the-
ory, in order to progress toward cognitive systems that are able to reason in
highly complex real-world environments. The proposed Bayesian framework is
a generic approach for probabilistic reasoning. It combines probability distri-
butions, established through a priori knowledge and learning, with Bayesian
inference in order to make autonomous system capable of dealing with the un-
certainty and incompleteness of the real world. A priori knowledge and models
reduce significantly the complexity of the implementation. Thus, the probabilis-
tic reasoning becomes more feasible for highly dynamic and complex environ-
ments.



In classical robotics [1], the programmer of the robot has himself an abstract
conception of the environment, described in geometrical, analytical and/or sym-
bolic terms because the shape of objects, the map of the world, the laws of
physics and the objects are known. Programming such a robot is a difficult
task because the programmer needs to completely know the environment. The
main example of this kind of robotics are the robots used to manufacture cars.
Their environment is highly constrained and their behavior is usually described
through a finite-state automaton. This is the usual answer to the problem of
uncertainty: let the environment be as predictable as possible by controlling and
constraining it. If the environment is open and if it cannot be constrained, or if
the programmer aims at a more versatile robot, then the complexity of the pro-
gram increases dramatically and lead to intractable models and representation
of the real world. Therefore, it is necessary just to take into account a small part
of the environment leading to a large number of hidden or unknown variables.

From an engineering point of view, an accurate control of both the environ-
ment and the tasks ensures that industrial robots work properly. However, this
approach is no longer possible when the robot must act in an environment not
specifically designed for it. The purpose of this chapter is to give an overview
of a generic solution to this problem especially to present a versatile framework
called Bayesian Programming (BP). Section 2 presents the Bayesian Program-
ming paradigm. It establishes a common formalism and methodology that will
be used throughout this chapter. The last section will be devoted to two complex
examples in robotics. A solution based on Bayesian Programming will also be
presented.

2 The Bayesian Programming Framework: A Generic

Formalism

This section introduces the Bayesian Programming formalism. As mentioned in
the introduction, when programming a robot, the programmer constructs an
abstract representation of its environment, which is basically described in geo-
metrical, analytical or symbolic terms. In a way, the programmer imposes to the
robot, his or her own abstract conception of the environment. The difficulties
appear when the robot needs to link these abstract concepts with the robot’s raw
signals (either obtained from the robot’s sensors or being sent to the robot’s actu-
ators). The central origin of these difficulties is the irreducible incompleteness of
the models. Probabilistic methodologies and techniques offer possible solutions
to the incompleteness and uncertainty difficulties when programming a robot.
The basic programming resources are probability distributions. The Bayesian
Programming (BP) approach was originally proposed as a tool for robotic pro-
gramming (see [2]), but nowadays used in a wider scope of applications: CAD
systems [3], path planning [4] or medical diagnosis [5].

The Bayesian Programming formalism allows using a unique notation and
structure to describe probabilistic knowledge and its use. The elements of a



Bayesian Program are illustrated in Figure 1. A BP is divided in two parts: a
description and a question.
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Fig. 1. Structure of a Bayesian program.

2.1 Description

The first component is a declarative component, where the user defines a de-

scription: it is a way to specify a joint distribution over a set of variables
{X1 X2 . . . Xn}, given a set of experimental data δ and preliminary knowl-
edge π. The variables have to be relevant for the environment one would like
to model. The joint distribution P (X1 X2 . . . Xn | δ π) is decomposed into a
product of simpler terms based on some conditional independence assumptions.
This set of assumptions belongs to the set π of a priori knowledge. In order to
complete the description, parametric forms (also belonging to π) and a priori

distributions (numerical parameters of the so-called parametric forms) are given.
If there are free parameters in the parametric forms, they have to be manually
defined or fitted using a learning procedure on the set of experimental data δ.

The aim of a decomposition is to introduce some conditional independence
assumptions between variables so that to decrease the complexity of the inference
process or more generally to introduce a priori knowledge about the environment
or the behavior of the robot. This kind of knowledge is provided by the program-
mer and represents either causal interactions [6] or structural relations between
variables. For example, a first-order Markov assumption claims that the belief
state of a variable Xt at time t is independent of its long-term past, given its
short-term past. In other words Xt is independent of Xt−i,∀i > 1 given Xt−1.
Therefore the decomposition for such a simple system is P (Xt|Xt−1).P (Xt−1).

Variables represent facts about the environment or the robot. For example,
a light sensor could be represented by a variable L where its probability distri-
bution is assumed to be Gaussian, L ∼ N (µ, σ2), and represent the intensity of
light occurring at the sensor.

2.2 Question

Now, let assume that an environment can be described with the following set
of variables S = {A,B,C,D}. Our a priori (or prior) knowledge can be sum-
marized by the statement ”C is independent of D given A and B”. No other



particular knowledge about A and B is available. Therefore, an obvious decom-
position would be P (ABCD) = P (C|AB)P (D|AB)P (AB). This decomposition
is not easy to use since the joint probability distribution over {AB} has to be
computed. The probability P (AB) can be approximated using sampling tech-
niques or can be decomposed into a simpler joint probability distribution using
the so-called chain’s rule: P (AB) = P (A|B)P (B) = P (B|A)P (A). More for-
mally, a question is obtained by partionning the initial set of variables into three
distinct subsets: Known, Searched and Unknown. The first set denotes the set
of observed variables. The second is the subset for which one wants to know the
posterior joint probability distribution. And finally, the third subset contains
unobserved or latent variables.

Using knowledge is answering the question. Answering the question is solving
a Bayesian inference problem on the description in order to compute the posterior
probability distribution described by the question. Therefore, a question in a
Bayesian Program is the posterior probability distribution one is interested, given
some measurements on the other variables. For example, let assume that we
know some facts about B, but nothing about the other variables, say B = b1.
We would like what is the posterior distribution of D given B = b1. The question
is P (D|B = b1). Here we assume we have an algorithm to solve this Bayesian
inference problem is available, and so by giving the description, π and δ, the
probability distribution of P (D|B = b1) can be computed.

The general question P (S\B |B = b1) is also known as the belief propagation
problem [7]. This chapter is mainly concerned with modeling issues, and we as-
sume the inference problem to be solved and implemented in an efficient way
by an inference engine. The reader should be warned that Bayesian inference is
not an obvious problem and inference algorithms are usually designed together
with the model itself in order to obtain optimal results in terms of computa-
tional costs and accuracy. However, general algorithms are also available, based
on messages and beliefs propagation [8], sampling techniques or variational ap-
proximations [9].

3 Complex Bayesian Programming for Robotics

This section presents two applications of Bayesian Programming. The first one
is an extension of occupancy grids using a priori knowledge to perform target
position and velocity in an urban traffic situation. The grids are combined with
danger estimation to perform an elementary task of obstacle avoidance with an
electric car. The second application is devoted to topological global localiza-
tion by using sequences of features forming a global distinctive fingerprint. The
topological representation gives a compact representation since only distinctive
places within the environment are encoded.



3.1 Bayesian Programming for Multi-Target Tracking: An

Automotive Application

The ADAS Context Unlike regular cruise control systems, Adaptive Cruise
Control (ACC) systems use a range sensor to regulate the speed of the car while
ensuring collision avoidance with the vehicle in front. ACC systems were intro-
duced on the automotive market in 1999. Since then, surveys and experimental
assessments have demonstrated the interest for this kind of systems. They are
the first step towards the design of future Advanced Driver Assistance Systems
(ADAS) that should help the driver in increasingly complex driving tasks. The
use of today commercially available ACC systems is pretty much limited to
motorways or urban expressways without crossings. The traffic situations en-
countered are rather simple and attention can be focused on a few, well defined
detected objects (cars and trucks). Nonetheless, even in these relatively simple
situations, these systems show a number of limitations: they are not very good
at handling fixed obstacles and may generate false alarms; moreover, in some
’cut-in’ situations, i.e. when the intrusion of an other vehicle or a pedestrian
in the detection beam is too close to the vehicle, they may be unable to react
appropriately.

A wider use of such systems requires to extend their range of operation to
some more complex situations in dense traffic environments, around or inside
urban areas. In such areas, traffic is characterized by lower speeds, tight curves,
traffic signs, crossings and “fragile” traffic participants such as motorbikes, bi-
cycles or pedestrians.

The Related Multi-Target Tracking Problem A prerequisite to a reliable
ADAS in such complex traffic situations is an estimation of dynamic character-
istics of the traffic participants, such as position and velocity. This problem is
basically a Multi-target Tracking problem. The objective is to collect observa-

tions, i.e. data from the sensor, on one or more potential obstacles in the envi-
ronment of the vehicle, and then to estimate at each time step and as robustly
as possible the obstacles position and velocity. Classical approach is to track the
different objects independently, by maintaining a list of tracks, i.e. a list of cur-
rently known objects. The main difficulty of multi-target tracking is known as
the Data Association problem. It includes observation-to-track association and
track management problems. The goal of observation-to-track association is to
decide whether a new sensor observation corresponds to an existing track or not.
Then the goal of track maintenance is to decide the confirmation or the deletion
of each existing track, and, if required, the creation of new tracks. A complete
review of the tracking methods with one or more sensors can be found in [10].

Urban traffic scenarios are still a challenge in multi-target tracking area: the
traditional data association problem is intractable in situations involving nu-
merous appearances, disappearances and occlusions of a large number of rapidly
maneuvering targets.

The approach presented here is a new approach for a robust perception and
analysis of highly dynamic environments. This approach has been designed in



order to avoid the data association problem previously mentioned. It is based on
a probabilistic grid representation of the obstacles state space. As we consider
the position and the velocity of the potential obstacles with respect to our ve-
hicle, this grid is 4-dimensional. Then for each cell of the grid, the occupancy
probability is estimated using sensor observations and some prior knowledge.

Estimation of the Occupancy Grid The objective is to compute from the
sensor observations the probability that each cell is full or empty. To avoid a
combinatorial explosion of grid configuration, the cell states are estimated as
independent random variables.

The occupancy grid framework was extensively used for mapping and local-
ization. Of course, for an automotive application, it is impossible and useless
to model the whole environment of the vehicle with a grid. Thus we will model
only the near-front environment of our vehicle. As we want to estimate the rel-
ative position and the relative velocity of objects, each cell of our 4-D4 grid
corresponds to a position and a speed relative to the vehicle.

Figure 2 presents the Bayesian Program for the estimation of the occupancy
probability of a cell. To simplify notations, a particular cell of the grid is denoted
by a single variable X, despite the grid is 4-D. The number of sensor observations
at time k is named Nk. One sensor data at time k is denoted by the variable
Zk

i , i = 1 . . . Nk. The set of all sensor observations at time k is noted Zk. The set
of all sensor observations until time k is referred by the notation Z1:k. A variable
called the matching variable and noted Mk is added. Its goal is to specify which
observation of the sensor is currently used to estimate the state of the cell.

Bayesian Occupancy Filter To take into account the dynamic environment,
and to be as robust as possible relatively to objects occlusions, it is necessary to
take into account the sensor observations history and the temporal consistency of

the scene. This is done by introducing a two-step mechanism in the occupancy
grid estimation. This mechanism includes a prediction (history) and an esti-
mation (new measurements) steps. This mechanism is derived from the Bayes

filtersq approach [11] and it is called the Bayesian Occupancy Filter (BOF).
Figure 3 shows the corresponding Bayesian Program.

Experimental Results To test the estimation of occupancy grids both a sim-
ulator and the real Cycab vehicle were used. Figure 4 shows the first results of
estimation and prediction steps, for a static scene. The upper left scheme de-
picts the situation: two static objects are present in front of the Cycab. These
two objects are fixed. The Cycab is static too. Thus only 2-dimensional grids
are depicted, corresponding to the object’s position at a null speed. Figure 4b
represents the occupancy grid, knowing only the first sensor observations. The
gray level corresponds to the probability that a cell is occupied. In this case,
the two objects are detected by the sensor. Consequently, two areas with high

4 2 dimensions for the x, y position and 2 dimensions for the ẋ, ẏ velocities
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Fig. 2. Estimation Step at time k.
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Fig. 3. Prediction Step at time k.



occupancy probabilities are visible (dark gray areas). These probability values
depend on the probability of detection, the probability of false alarm, and on the
sensor precision. All these characteristics of the sensor are taken into account in
the sensor model.
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Fig. 4. First example of grid estimation, for a static scene.

The cells hidden by a sensor observation have not been observed. Thus we
can not conclude about their occupancy. That explains the two areas of proba-
bility values close to 0.5. Thanks to this property of occupancy grids and to the
prediction phase, the estimation of the grid is robust to temporary occlusion be-
tween moving objects. Finally, for cells located far from any sensor observation,
the occupancy probability is low (plain grey areas).

To validate the approach in dynamic situations, an application involving
an electric car has been implemented [12]. The car is longitudinally controlled
in order to avoid obstacles. This basic behavior is obtained by combining the
occupancy probability and the danger probability of each cell of the grid. Results
of the experiments clearly show that this approach is able to prevent collisions
even when moving obstacles (pedestrians for example) are temporally hidden
(by a parked car for example).



3.2 Bayesian Programming for Topological Navigation with the

Fingerprint Concept

Introduction The topological approach yields a compact representation and
allows high-level symbolic reasoning for map building and navigation. With this
method we try to eliminate the perceptual aliasing (i.e. distinct locations within
the environment appearing identical to the robot’s sensors) and to improve the
distinctiveness of the places in the environment. To maximize the reliability
in navigation, the information from all the sensors that are available to the
robot must be used. The notion of fingerprint is used [13, 14] to characterize
the environment. This is especially interesting when used within a topological
localization and multiple modality framework.

Fig. 5. Fingerprint generation. (a) panoramic image with the vertical edges ’v’ and
color patches detection, (b) laser scan with extracted corners ’c’ and beacons ’b’, (c)
the first four images depict the position (0◦ to 359◦) of the vertical edges, the corners,
the beacons and the colors (G-green, E-light green, and A-red) respectively. The fifth
image describes the correspondence between the vertical edge features and the corner
features. By regrouping all this results together and by adding the empty space features,
the final fingerprint is: cbccbnfGcnEnvccncbcvncnnfvvvnccAcb.

A fingerprint is a circular list of features, where the ordering matches the
relative ordering of the features around the robot. We denote the fingerprint
sequence using a list of characters, where each character represents the instance
of a specific feature type. In our case we choose to extract color patches and
vertical edges from visual information and corners and beacons from laser scan-
ner. The letter ’v’ is used to characterize an edge, the letters A, B, C, . . ., P to



represent hue bins, the letter ’c’ to characterize a corner feature and the letter
’b’ to characterize a beacon feature. Details about the visual features extraction
can be found in [14, 15] and laser scanner features extraction can be found in
[16].

Fingerprint Generation The fingerprint generation is done in three steps (see
Figure 5). The extraction of the different features (e.g. vertical edges, corners,
color patches, beacons) from the sensors is the first phase of the fingerprint gen-
eration. The order of the features, given by their angular positions (0◦..359◦) is
kept in an array. At this stage a new type of virtual feature ’f’ is introduced,
that reflects the correspondence between a corner and an edge. The ordering of
the features in a fingerprint sequence is highly informative and for that reason
the notion of angular distance between two consecutive features is added. This
geometric information increases, once again, the distinctiveness between the fin-
gerprints. Therefore, we introduced an additional type of feature, the empty
space feature ’n’, to reflect angular distance. Each ’n’ covers the same angle of
the scene (20 degrees). This insertion is the last step of the fingerprint genera-
tion [14].

Fingerprint Matching for Localization The string-matching problem is not
easy. Usually strings do not match exactly because the robot may not be exactly
located on a map point and/or some changes in the environment or perception
errors occurred. The standard algorithms are quite sensitive to insertion and
deletion errors, which cause the string lengths to vary significantly. The approach
adopted previously in the fingerprint approach for sequence matching is inspired
by the minimum energy algorithm used in stereo-vision for finding pixels in two
images that correspond to the same point of a scene [17]. More details can be
found in [13, 14]. Our current approach is a combination of the global alignment
algorithm and the Bayesian formalism and it is described below.

Probabilistic fingerprint matching algorithm The new approach comprises two
steps. The first step is the phase of supervised learning where the robot inspects
several locations, denoted by Loc. From each location loc ∈ Loc the robot ex-
tracts the fingerprint data, as explained earlier, and stores it along with the
name of the location in a database, denoted by the symbol π.

The second step is the phase of application, where we want the robot to
localize itself in the environment. To answer at the question ”Where am I?”, the
robot will extract the fingerprint fp of its current surroundings and solve the
basic formula of probabilistic localization:

loc∗ = arg maxloc∈LocP (loc | fp π).

This means that if fingerprints are associated to each location, then the actual
location of the robot may be recovered by comparing the fingerprint fp with the
data of known locations and choosing the location loc∗ which has the highest
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Variables
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Fp : a fingerprint of a location Loc: the set of locations

Decomposition
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P (Loc | π) P (V e | Loc π) P (Cp | Loc π)
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«

Parametric Forms
P (Loc | π): Unif.

P (f | loc π): |f|

q
Q

fi∈f pMOG(θ
floc

i

)(fi), ∀loc ∈ Loc

where f∈(V e, Cp, Ex, B)
P (Fp | loc π): 1

GlobalAlignment(Fp,fploc)+1

where fploc is the fingerprint of the location loc

Question :
P (Loc | V e Cp Ex B Fp π)

Fig. 6. The fingerprint matching formalism written in BP

probability. In what follows we show how P (loc | fp π) can be solved by applying
Bayesian Programming.

Figure 6 shows the Bayesian Program used for the fingerprint matching. The
features are denoted by: Ve the set of vertical edges and Cp the set of color
patches extracted by the omni-directional camera; Ex the set of line extremities
and B the set of beacons extracted from the data given by the laser scanner. For
the fingerprint of a location, which is encoded as a circular string the notation
Fp is used, and for the set of known (learned) locations the notation Loc is
employed. Although the fingerprint string Fp, constructed over all the features
(see [15]), adds some redundancy to the system, it introduces at the same time
valuable information about the relative order of the features, which will improve
the results. We assume that the variables Ve, Cp, Ex, B and Fp are independent
from one another. We consider that the features (Ve, Cp, Ex, B) are dependent
of the location and these dependencies lead to the decomposition described in
the Bayesian Program (see Figure 6). From the result of the decomposition
formula (see Figure 6) we can distinguish three different kinds of probability
distributions:

– Since we have no a priori information about locations, we consider each
location to be equally probable and consequently we express the probability
of a location given all the prior knowledge as a uniform distribution.

– To determine the probability of one feature f, where f ∈ {Ve, Cp, Ex,
B}, given the location and all the a priori knowledge, we suggest to ex-
press this probability as the likelihood of the new feature data f with re-



spect to the distribution of the same feature as encountered at the given
location during the learning phase. We calculate the distribution as a mix-
ture of Gaussians (MOG) in angle space, optimizing the mixture parameters
θf loc

i
={wf loc

i
,µf loc

i
,σf loc

i
}(where wf loc

i
is the weight, µf loc

i
is the mean and

σf loc
i

is the standard deviation of the fi-th mixture component), by making

use of the Expectation Maximization (EM) algorithm [18]. Let us illustrate
the P (f = V e | loc π) with an example. We start with a set of 13 occur-
rences of vertical edges and we calculate the MOG for it. We then generate
a second set, this time with 18 occurrences, and evaluate the probability
P (f = V e | loc π) for both data sets with the same MOG parameters (see
Figure 7a and Figure 7b). As expected, the resulting value is for the first
data set significantly higher than for the second, since the parameters of the
MOG were chosen to maximize the first set. Note how flexible this method
is with respect to the number of features per set: A MOG can be gener-
ated from a set of any number of features, and it can be evaluated later for
samples of arbitrary length.

– To calculate the probability of the fingerprint sequence given the location and
all the prior knowledge: we will use the global alignment algorithm [19] used
usually for the alignment of DNA sequences and so let GlobalAlignment(Fp, fploc)
be a function yielding the minimal cost of the global alignment algorithm of
two fingerprint strings.

Obviously, the three equations from the parametric forms will solve the basic
question described in the Bayesian Program.

a) b)

Fig. 7. (a)Evaluation of P (f = V e | loc π) for the original data set. (b)Evaluation of
P (f = V e | loc π) for other data set, resulting in a smaller value, since the MOG is
not optimal for this data.



Experimental Results The approach has been tested in ten rooms, in a
50× 25 m2 portion of our institute building. For the experiments, Donald Duck
(see Figure 8), a fully autonomous mobile robot, has been used.

Fig. 8. System used for the experimentation: The fully autonomous robot Donald Duck
and the panoramic vision system. The camera has a 640× 480 pixel resolution and an
equiangular mirror is used so that each pixel in the image covers the same view angle.

In order to validate the probabilistic fingerprint approach, for each of the ten
rooms, fingerprints have been extracted. This experiment has been repeated ten
times for each room. Eight times it was placed on a circle 40 cm to 70 cm of
radius, yielding the training data, and two times inside the same circle, yielding
the test data. For a given observation (fingerprint), a match is successful if the
best match with the database (highest probability) corresponds to the correct
room. Since the number of occurrences of the beacon and color patch feature was
too small to give significant results, they were omitted for the MOG calculations,
but they were used for the fingerprint strings. The results yield a percentage of
successful matches of 82.4%. The method presented does not always lead to a
perfect success rate, but it still delivers valuable information for false-matched
rooms. When the room is successfully matched, the probabilistic matching algo-
rithm gives a high probability: 0.79 in average (between 0.62 and 0.89). Even if it
detects the correct room with the second or third highest probability, a Bayesian
localization approach, like for example a Partially Observable Markov Decision
Process (POMDP) [20, 21] can use this information in its observation function.
An amelioration of the results can be expected with the augmentation of the
number of components of Mixture of Gaussians (MOG) and of the number of
observations of a feature [22].

4 Conclusion and open problems on Bayesian

Programming

The main interest of Bayesian Programming is its ability to describe real-world
models with partial and incomplete knowledge about the world. Bayesian Pro-
gramming is a promising framework and a lot of exciting open problems still



exists. To progress toward more robust and sophisticated robotics control sys-
tems, these problems need innovative and original solutions. Apart from robotics,
those problems are common to other artificial intelligence related fields. It was
shown before that it is impossible to completely represent an environment and
the strength of Bayesian Programming is to deal with this incompleteness by
transforming it into uncertainty. However, the more knowledge is used, the more
accurate is the behavior of the robot. Therefore, the problem of making realistic
and robust behaviors can be summarized as follow:

– how to make a well-adapted Bayesian Program?
– how to know that a program fit perfectly into a particular task?
– how to learn unknown parameters from real data and experiences?
– how to efficiently use a complex program with many variables and many

probabilistic forms?

The answer to those questions is not obvious and leads to more general and
exciting questions : learning and inference. How to learn a Bayesian Program
instead of making it by hand and how to use the data provided by sensors in order
to extract and learn a program? It is out of the scope of this paper to present
details about state-of-the-art research on algorithm for Bayesian Programming,
but we give here a few facts on this:

– inference is a NP-hard problem for a general Bayesian Program, but solutions
exists for particular problems. For example, a state-space model Bayesian fil-
ter is usually dealt with using Kalman filter [23, 24] or the Forward-Backward
algorithm [25]. If the time series analysed by the filter is stationary gaussian,
then Durbin-Levison approaches are technically efficient [26],

– inference on regular lattices of variables can be solved using suited algo-
rithms. For instance, factorial hidden Markov models represent a complex
stochastic process decomposed into several independent Markov chains given
observations. The inference problem is intractable but the use of a vari-
ational approximation helps to overcome the computational cost of exact
inference [27],

– probabilistic forms are usually discrete or gaussian. However, Bayesian Pro-
gramming aims at representing whatever probability distributions where
probabilistic forms are numerous or even unknown. Numerous approaches
exists for dealing with other probabilistic forms, like Mixtures of Gaussians
or exponential forms [28],

– complexity of probabilistic forms is sometime a bottleneck for robotics ap-
plications. Some techniques aims at reducing the memory footprint of those
forms by approximating the distribution leading to a more efficient internal
representation [29],

– making versatile programs is hard, but making small programs is quite easier.
Does it exist a similar way as object software engineering to link and join
small Bayesian Programs into a larger one. Several approaches have been
developed: relational probabilistic models [30] or active learning [31] in the
context of expert systems.



These techniques and approaches have been designed for particular purposes
in the field of statistical learning and artificial intelligence and solve specific
problems. They can be adapted to robotics and lead will to more efficient robots
systems being able to deal with more complex environments as those of the real
world.
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12. C. Coué, C. Pradalier, and C. Laugier, “Bayesian programming for multi-target
tracking: an automotive application,” in Proceedings of the International Confer-
ence on Field and Service Robotics, (Lake Yamanaka, Japan), 07 2003.

13. P. Lamon, I. Nourbakhsh, B. Jensen, and R. Siegwart, “Deriving and match-
ing image fingerprint sequences for mobile robot localization,” in Proceedings of
the International Conference on Robotics and Automation, vol. 2, (Seoul, Korea),
pp. 1609–1614, May 2001.

14. P. Lamon, A. Tapus, E. Glauser, N. Tomatis, and R. Siegwart, “Environmental
modeling with fingerprint sequences for topological global localization,” in Pro-
ceedings of the International Conference on Intelligent Robots and Systems, vol. 4,
(Las Vegas, USA), pp. 3781–3786, October 2003.

15. A. Martinelli, A. Tapus, and R. Siegwart, “Multi-resolution slam for real world
navigation,” in 11th International Symposium of Robotics Research, (Siena, Italy),
October 2003.



16. K. O. Arras and R. Siegwart, “Feature extraction and scene interpretation for
map-based navigation and map building,” in Proceedings of the Symposium on In-
telligent Systems and Advanced Manufacturing, (Pittsburgh, USA), October 1997.

17. T. Kanade and Y. Ohta, “Stereo by intra- and inter- scanline search dynamic
programming,” IEEE Transactions on pattern analysis and machine intelligence,
vol. PALMZ, March 1985.

18. J. A. Bilmes, “A gentle tutorial of the EM algorithm and its application to parame-
ter estimation for gaussian mixture and hidden markov models,” ICSI-TR-97-021,
1997.

19. S. Needleman and C. Wunsch, “A general method applicable to the search for
similarities in the amino acid sequence of two proteins,” Journal Molecular Biology,
vol. 48, 1970.

20. A. R. Cassandra, L. Kaelbling, and J. Kurien, “Acting under uncertainty: Discrete
bayesian models for mobile robot navigation,” in Proceedings of the International
Conference on Robotics and Automation, vol. 2, (Osaka, Japan), pp. 963 – 972,
November 1996.

21. N. Tomatis, I. Nourbakhsh, and R. Siegwart, “Hybrid simultaneous localization
and map building: a natural integration of topological and metric,” Robotics and
Autonomous Systems, vol. 44, pp. 3–14, 2003.

22. A. Tapus, S. Heinzer, and R. Siegwart, “Bayesian programming for topological
global localization with fingerprints,” in International Conference on Robotics and
Automation, (New Orleans, USA), May 2004.

23. R. Kalman, “A new approach to linear filtering and prediction problems,” Journal
of basic Engineering, vol. 35, Mars 1960.

24. P. Smyth, D. Heckerman, and M. Jordan, “Probabilistic Independance Networks
for Hidden Markov Probability Models,” Tech. Rep. MSR-TR-96-03, Microsoft
Research, June 1996.

25. L. Rabiner, “A tutorial on hidden Markov models and selected applications in
speech recognition.,” in Proceedings of the IEEE, vol. 77, pp. 257–285, 1989.

26. P. Brockwell and R. Davis, Introduction to Time Series and Forecasting. Springer,
2002.

27. Z. Ghahramani and M. Jordan, “Factorial hidden Markov models,” MIT Compu-
tational Cognitive Science Report Technical Report 9502, MIT, 1995.

28. M. Jordan, “Graphical models,” Statistical Science (Special Issue on Bayesian
Statistics), p. In press, 2002.

29. D. Bellot and P. Bessière, “Approximate discrete probability distribution repre-
sentation using a multi-resolution binary tree,” in ICTAI 2003, (Sacramento, Cal-
ifornia, USA), 2003.

30. L. Getoor, N. Friedman, D. Koller, and B. Taskar., “Learning probabilistic mod-
els of relational structure,” in Eighteenth International Conference on Machine
Learning (ICML), (Williams College), 06 2001.

31. S. Tong and D. Koller, “Active learning for structure in bayesian networks,” in Sev-
enteenth International Joint Conference on Artificial Intelligence, (Seattle, Wash-
ington), pp. 863–869, August 2001.


