
Submitted to Adaptive Behavior
July, 2004

Incremental Development of Adaptive Behaviors

using Trees of Self-Contained Solutions

Torbjørn S. Dahl Christophe Giraud-Carrier

Norwegian Defence Research Establishment ELCA Informatique SA
Postboks 25, 2027 Kjeller, Norway Lausanne 13, Switzerland

phone: +47 63807782 cgc@elca.ch

fax: +47 63807715

Torbjorn-Semb.Dahl@ffi.no

Running Head

Incremental Development of Adaptive Behaviors

1



Abstract

We present a simple methodology for incremental development of com-
plex adaptive behaviors in robots. The methodology decomposes a given
root strategy into a tree of self-contained supporting strategies that can
be fully implemented and tested before the next strategy is added. The
methodology also uses comparative performance tests for each new strat-
egy relative to its predecessor. The methodology assumes the use of skill
modules that can be shared by multiple behavioral layers and produces
learning mechanisms that are highly specialized and context dependent.
Two example applications of the methodology are presented using simu-
lated robots in the domains of foraging/mapping and conflict resolution.
The examples are implemented by hand using a decomposed model of
behavior that allows skill modules to be shared while retaining a unique
representation of each strategy for excitation and inhibition. Finally we
discuss how the solutions produced using this methodology differ from
existing behavior-based solutions.

Keywords

Incremental Development, Learning, Foraging, Mapping, Conflict Resolution

2



1 Introduction

Incremental development is a well-known approach in Software Engineering (SE)
[Larman and Basili, 2003] and prominent idea in Behavior-Based (BB) systems
[Brooks, 1986, Bryson, 2001]. Incremental development has also been used as
a way of facilitating automated development through Machine Learning (ML).
Evolutionary Robotics (ER) [Nolfi and Floreano, 2000] and Epigenetic or Devel-
opmental Robotics (DR) [Weng et al., 2000] are two such automated develop-
ment strategies both inspired by incremental processes found in nature. How-
ever, currently existing research on BB systems contains relatively little work
on top-down design methodologies that can support incremental development.

We have produced a simple incremental SE methodology based on the idea
that partial solutions to a given problem can themselves be self-contained sys-
tems. They can either be solutions of lower quality than the final solutions
or they can be solutions to a sub-problem related to the given problem. We
used the methodology to develop adaptive behaviors for foraging, mapping and
conflict resolution and studied the restrictions and possibilities this approach
entailed. Here we present the main contributions of this work to the area of
adaptive behavior.

The methodology decomposes a given problem solving strategy into a com-
plete tree of self-contained, testable, partial solutions, with minimal incremental
steps between each solution. The methodology works by recognizing key per-
ceptual and behavioral skills required by the target strategy. These skills can
represent salient features of immediate and previous experience or general capa-
bilities such as taxis. The implementation of the required skills are delegated,
as much as possible, to a number of supporting strategies that make them avail-
able across behavioral layers through an abstraction mechanism such as Robot
Schemas [Lyons and Arbib, 1989].

To support our methodology we have developed a decomposition of the lay-
ered control structures common in BB controllers. This decomposition is also
presented in this article. Our behavioral components support the abstraction
and reuse of perceptual and behavioral skills while retaining a unique presence
for every behavioral strategy in order to support subsumption-style action se-
lection through excitation and inhibition.

The solutions produced using the methodology presented have three main
strengths. First, they employ multiple strategies of different sophistication con-
currently to solve a given problem. During learning and in the case of limited
hardware failures, such algorithms can retain a higher level of performance than
algorithms that use a single strategy. Second, the learning that takes place in
the strategies developed is highly restricted. Highly restricted learning allows
the algorithms to adapt quickly after minimal amounts of experience. Third,
the solutions reuse general skill modules. This leads to less implementation
work, fewer bugs and more compact systems.

For clarity, we use the term behavior to denote only externally observable
displays. We call the solution to a problem provided by certain behaviors a
behavioral strategy or just strategy. We use the term behavioral layer or layer

3



to denote the internal structures of a robot involved in supporting a specific
behavioral strategy. Controllers are generally referred to using the most sophis-
ticated behavioral layer it contains, e.g., the pecking order adherence controller.
A behavioral layer implements a partial mapping from a set of stimuli to a set of
responses. We would like to emphasize that we use the term learning to describe
any change in this mapping as a result of experience. In our terms an entity
that recognizes its level of strength relative to a competitor has done learning.

2 Motivation

In SE it has long been recognized that incremental development reduces the risk
of spending effort on undesirable or infeasible designs [Larman and Basili, 2003].
The popularity of approaches such as Extreme Programming (XP) [Beck, 1999]
and the broader class of related methods called Agile Methods [Cockburn, 2001]
illustrates the importance of this reduction in risk. People with experience
in Open Source Development [Raymond, 1999] also emphasize the importance
of incremental development as a way to expose bugs and bad design. Broadly
speaking incremental development is: ’feedback driven refinement with customer
involvement and clearly delineated iterations’ [Larman and Basili, 2003].

In a learning system, it is generally desirable to have a high initial per-
formance level that increases gradually rather than a performance level that
remains close to that of random actions until a certain amount of information
has been gathered. Correspondingly, it is desirable for a system to display grace-
ful degradation, i.e., a gradual loss of performance rather than complete failure
in a system. Evidence from biology [Gould and Gould, 1999], indicates that
animals achieve these two things by having available to them a spectrum of in-
creasingly sophisticated behavioral strategies for solving given problems. There
is also evidence that the presence of simple strategies based on simple forms
of learning, such as Pavlovian conditioning, are prerequisites for more sophis-
ticated strategies based on more advanced forms of learning such as imitation
[Moore, 1996]. Consider an animal that competes with other members of its own
species for a limited resource. Such an animal can have a number of increas-
ingly sophisticated strategies for resolving conflicts. One very basic, perhaps
implausible, strategy would be to fight until victory or death. Increasingly com-
plex physiologies and cognitive abilities can support increasingly sophisticated
conflict resolution strategies such as, yielding, adherence to pecking order, and
coalition building. Strategies of different sophistication will necessarily depend
on varying levels of experience and have different execution time. Depending
on the animals experience and situation, a subset of these strategies might be
applicable.

BB architectures divides complex control problems into a set of competing
behaviors. Traditionally there are different behaviors for different problems such
as wall following, obstacle avoidance and taxis. However, in order to support
incremental development and provide robust and fast-learning controllers, we
use different behaviors that solve the same problem. According to the resources

4



and experience available to a robot, it applies different behaviors, each consti-
tuting a different solution to the same problem. When each of these strategies
can also function independently, they provide partial but self-contained solu-
tions to the original problem, i.e., they are delineated iterations for incremental
development.

In order to bring together the benefits of incremental development and the
advantages of having multiple concurrent strategies for the same problem, we
developed a methodology for the incremental development of complex adaptive
behaviors using trees of self-contained solutions. The methodology is a set
of recommendations related to the order, the structure and the content of a
series of partial solutions leading up to a final desirable robot behavior. The
recommendations are presented here together with a general decomposition of a
behavioral layer that supports the kind of skill abstraction necessary. Our goal
with this work is to provide and demonstrate a functional methodology that
can benefit everyone who are doing incremental development in the area of BB
systems, including those using ML-based approaches.

3 Methodology

Incremental development describes a process of interaction between a system’s
design and its implementation. This process runs over a number of iterations
where the design guides implementation and where implementation and test-
ing provides verification of and improvement on, the design. The process is
illustrated graphically in Figure I.

Figure I: The Incremental Development Process

Feedback

Implementation

Guidance

Design

Our approach to the incremental development of arbitrary behavioral strate-
gies assumes that it is possible to construct a tree of supporting strategies con-
necting the top-level or root strategy to a set of simpler starting points or leaf
strategies. We call such a tree a strategy tree. We have formalized the main
elements of the construction of strategy trees into a set of rules for incremental
development of complex adaptive behaviors.

1. Design

Starting with a strategy tree containing only the root strategy, for each
non trivial strategy in the tree, we do the following:

5



• Skills - Identify the perceptory and behavioral skill requirements

• Support - Identify supporting strategies to be added as new branches
to the strategy tree, delegate skills, refine requirements

• Interaction - Identify the inhibition structure and shared schemas

• Evaluation - Specify an evaluation metric that captures the advantage
of this strategy and define an environment in which the advantage is
expressed

2. Implementation

From the bottom up, for each strategy in the complete path:

• Feasibility - Test the feasibility of the design through implementation

• Viability - Test the viability of the strategies through experimental
comparison of performance

• Revision - Revise the design according to feedback from implemen-
tation and testing

3.1 The Design Phase

Our methodology starts with a strategy tree containing only the envisioned top-
level strategy for solving a given problem. Each strategy in the tree that is not
directly implementable is expanded by adding a set of supporting strategies as
leaves until all the leaf strategies are directly implementable. Each supporting
strategy should implement one or more of the skills required by the supported
strategy. Each supporting strategy should itself be a self-contained solution to
the given problem or one of its sub-problems. By ’self-contained strategy’ we
mean a strategy that can be implemented and evaluated without implementing
its sibling strategies or its parent strategy.

Skills We have found that identifying the perceptory and behavioral skills
required to support a given behavioral strategy can be done using simple use-
cases [Pressman, 2001]. The use-cases should describe the different behaviors
of the strategy in different scenarios and the criteria that that decides which
behavior should be applied. The behaviors described in the use-cases are roughly
the behavioral skill requirements. The perceptual skill requirements are the
decision criteria.

Using an animal display strategy as an example we get the following use-
case: An animal recognizes a competitor puts on a display, recognizes whether
the competitor is stronger or weaker and flees or attacks accordingly. From this
scenario we get the following perceptory skill requirements: opponent recog-
nition and display interpretation. We also get the following behavioral skill
requirements: displaying, fleeing and attacking.

6



Support A supporting strategy is a child strategy that implements some of
the perceptory or behavioral skills identified in the previous step. By delegating
as many of the required sensory and behavioral skills as possible to supporting
layers, we minimize the incremental step between the strategies. This facilitates
development by reducing the risk of producing infeasible solutions during design
and the risk of producing bugs during implementation. Skills that can not be
delegated to supporting strategies must be implemented in a layer dedicated to
the supported strategy.

To identify supporting strategies we look at the skill requirements identified
in the previous step and try to come up with solutions to the given problem that
use some of the required skills but that perform a litte worse than the supported
strategy or solves only a sub-problem of the given problem. The design process
often goes through a number of iterations and good supporting strategies can
suggest beneficial adjustments to the supported strategies with corresponding
refinements of the original skill requirements.

In the case of stylized displays, we were able to delegate the fleeing and
attacking behaviors to a simpler conflict resolution strategy based on direct
interaction rather than displays. That strategy would also implement the oppo-
nent recognition skill. This left the display and display interpretation skills to
be implemented by the stylized display layer. The display interpretation used
memories of previously recognized opponents to analyze their behavior over
time. These memories were copies of the percepts produced by the opponent
recognition skill.

A Note on Memory and Learning In general we have found it helpful to
restrict memories to be copies or echoes of percepts that are themselves further
delegated. Strategies often have historical records of certain percepts as a part
of their perceptual requirements. In these cases it is possible that a supporting
strategy can be found that uses the required percept directly so that only a
memory schema is needed to provide the requirement of the parent strategy.
These kinds of memories are generally called deictic variables, and assigning
values to such variables is called imprinting.

Often, all that is needed by a new strategy is a record of whether a certain
event has happened. One example is the record of whether an opponent has
been recognized as stronger. To provide the underlying percept for this mem-
ory we came up with a supporting strategy which assumed that the opponent
was weaker and fled only when it could sense directly that the opponent was
stronger. Keeping a record of whether this sense had fired and refraining from
attacking stronger opponents was clearly a superior strategy. This kind of one-
shot learning is typical of the solutions produced using this methodology and it
provides a very efficient learning mechanism.

Interaction Supporting and supported strategies can both be applicable in
certain situations. A supported strategy often provides a new behavior for a
subset of the states in which the supporting strategy was applicable. To allow

7



strategies to be expressed at the right time it is necessary to identify their
interactions in terms of excitation and inhibition.

The stylized display strategy needed to inhibit the underlying layers when
an unknown robot was visible in order to evaluate the relative strength of the
other robot though mutual displays. In all other states control was yielded to
the underlying layers.

Evaluation Each node on the strategy tree provides an improved solution
to a problem relevant to the root strategy. For each new strategy we suggest
defining a measure of performance that can objectively discriminate between
the quality of the child and the parent strategies. This metric is used during
the implementation phase as an indication of progress being made toward the
final strategy.

The performance metric for the stylized display strategy was the robot’s
survival time. This was expected to increase as the robot was able to preserve
some of the energy previously spent on fighting.

3.2 The Implementation Phase

Whereas the design phase is mainly top-down, the implementation phase is
strictly bottom-up. The strategy tree provides abstract descriptions of solutions
that are not necessarily robust or efficient enough to work in situated systems. In
order to avoid flights of fancy we suggest that each strategy is fully implemented
and tested for performance before any work is done on higher-level strategies.

Test Feasibility through Implementation Implementation tests feasibil-
ity and allows non-comparative performance tests. This form of verification is
closely aligned with the practices in SE approaches such as XP, Agile Methods
and Open Source Development. The prerequisite for using a frequent release
approach is testability. By striving for self-contained strategies, we design a
series of testable systems. This gives us the possibility of doing frequent reality
checks and improvements of our designs. Such reality checks reduces the risk of
investing in infeasible or undesirable solutions.

Test Viability through Experimental Comparison This evaluation step
corresponds closely to fitness testing in evolutionary approaches where improved
fitness is the driving force of development. In developmental approaches and
approaches based on hand-coding comparative testing is not strictly a necessary
step. Comparative testing does however provide an indication that progress is
being made. Thinking in terms of improving fitness also opens up for inspiration
from biological systems.

Revise Path Implementation invariably produces new ideas for strategy de-
composition both for feasible and infeasible designs. When improvements to

8



existing designs become apparent, the designs should be updated or refactored
accordingly.

4 Decomposing Behavioral Layers

In order to reuse skill modules and support action selection based on excitation
and inhibition, we decomposed behavioral layer into a collection of schemas. The
schemas can send and receive structured data referred to as percepts. A schema
requests data from other schemas only when it has received a certain amount of
activation. When activated, our schemas will, typically request data. According
to the the data received, the schema will either fire or not. When a schema fires,
it sends activation to a set of registered receivers. It has, in this case, typically
produced a further abstraction of the received data which it again provides to
other schemas on request. This separation of activation and data allowed us to
limit the amount of computation done and keep down execution time. The gen-
eralized communication and the separation of the control- and data-flows makes
schemas well suited for procedural implementation of pre-defined behaviors. To
emphasize, a schema does not have to contain an ANN. In our examples the
functionality of schemas are provided by procedural implementations.

We have found it beneficial to divide schemas into six classes: sensor schemas,
sense schemas, drive schemas, memory schemas, competence schemas, and ac-
tuator schemas. A typical configuration of the different schema classes within
a behavioral layer is presented graphically in Figure II. For simplicity we use
one arrow to indicate the presence of either or both an activation and a data
channel. When a data channel is present, the arrow is labeled with the percept
communicated. In accordance with the notation used in the original subsump-
tion architecture [Brooks, 1986] inhibitions are indicated by lines with a circle
in one end. Another notation we use is a black dot connected to a drive. This
indicates the inhibition of all underlying drives. Schemas from other behavioral
layers are presented as dashed.

Figure II: The Components of a Behavioral Layer

Sensor Sense Drive Competence Actuator

Inhibiting
Drive

Inhibited

Memory

Perc

Perc Perc

Perc Perc Perc

Drives

Sensor schemas and actuator schemas encapsulate low-level application pro-
gramming interfaces (APIs). These schemas are presented graphically as boxes

9



with rounded corners. Sense schemas and competence schemas are high-level
sensor and actuator abstractions respectively. These schemas are presented
graphically as square boxes. The reason for creating a dedicated schema for a
particular sense or capability was to remove duplicity. It was clear from our
designs that in addition to the underlying APIs, certain general perceptory and
behavioral capabilities would be needed by several behavioral layers. By sep-
arating out these capabilities we let different behavioral layers share access to
them and saved ourselves from having to reproduce their functionality. Mem-
ory schemas are used to store data. In order to study the role of memory in
adaption we have imposed the restriction that only memory schemas may store
their state between activations. This restriction emphasizes the adaptive ele-
ments of behaviors but is somewhat of an overkill in simple cases. Last, drive
schemas handle the integration of sense and competence schemas within a be-
havioral layer. Drive schemas also handle the interaction between behavioral
layers through inhibition. A drive schema is a unique representation of a behav-
ioral layer and as such it cannot be shared. Each behavioral layer can contain
multiple sensor, sense, competence, actuator, and memory schemas that may be
shared with other layers. However if shared schemas are inhibited, all the related
strategies would be inhibited. This problem is solved by the unique, unsharable
drive schemas. A drive schema is represented graphically as a hexagon.

5 Strategies for Foraging and Mapping

Foraging or locating and gathering resources is a fundamental problem that
most animals are faced with. When the solution to a foraging problem includes
remembering spatial structures and the locations of resources, the problem be-
comes one of mapping. We decided to study these two domains as there should
be a natural progression from one to the other and as mapping is a domain
where biologists have recognized an abundance of strategies in animals. These
strategies have been shown to follow a path of increasing sophistication from
dead reckoning through navigation based on landmarks to navigation based on
cognitive maps [Gould and Gould, 1999]. There is also some neurological evi-
dence of how the animal brain does mapping [O’Keefe, 1996]. This knowledge
about animal strategies for foraging and mapping indicated that an incremen-
tal approach to these problems had a good possibility of being successful. We
decided that a reasonable test of an incremental approach would be to show
how such a methodology can provide a path that ties foraging to mapping in a
demonstrably feasible way.

5.1 Simulated Environment

Our implementations used a Khepera robot with six infrared (IR) proximity
sensors and a K6300 color camera, simulated by the Webots robot simulator.
We used a square 1.5m by 1.5m simulated environment presented graphically
in Figure III. The environments contained an energy source or feeder, two fixed

10



obstacles and a Khepera robot. Each corner was marked with a unique color
and functioned as a landmark.

Figure III: The Simulated Webots Environment

The complete design for the final solution is presented in Figure IV. The
shared schemas are outlined in gray.

5.2 Designing Strategies for Foraging and Mapping

We started with a general mapping strategy in mind, where a robot would
explore an environment and be able to revisit previously observed food sources
or feeders. For simplicity, we assumed an environment where all landmarks were
globally visible. The metric for comparing the viability of the strategies was the
feeding rate, i.e., the number of times the robot reached a feeder during a set
time period. The application of the rules of our methodology as presented in
Section 3 is indicated by their labels.

Approach General Feeder Position The general mapping strategy implied
remembering the location of feeders and returning to these at strategic times.

Skills - In order to follow such a strategy we recognized that the robot would
need to know its current location and the location of the observed feeders. It
would also have to know how to return to any given location. Finally, it would
need to know when its energy levels dropped to a certain level, in order to head
for a feeder at the optimal time.

Support - The problem of returning to a known location was divided into
two strategies. the approach general feeder position strategy turned the robot

11



Figure IV: The Behavioral Layers for Foraging and Mapping

FullFeeder−
Memory

Feeding−
Sense

EmptyFeeder−
Sense

EnergyLevel−
Sensor

WheelActuator
(Left)

WheelActuator
(Right)

Visible Feeder
Position Approach

Approach−
Position−
Competence

K6300Sensor
(Camera)

FullFeeder−
Sense

(e,ne,nr)
int

int

ProximitySense
Left/Right

CloseFeeder−
Sense

IRSensors

(w,nw,ln)
IRSensors

image

image

position

int

MoveDrive int

int

Competence
FullFeeder−
ApproachDrive

ApproachObject−

int

AvoidObstacle−
Drive Left/Right

int

int

Position Approach

int

position

position

object

object

object

Touch−
FullFeederDrive

ExploreDrive

ApproachVisible−
FeederPosition−
Drive

Drive

ApproachGeneral−

position position

Random
Walk

LowEnergy−
Sense

Memory
FeederPosition−

PositionSense
Exploration
Structured

General Feeder
FeederPosition−

object

CornerSenses
(ne,se,sw,nw)

12



toward a known location, while the approach visible feeder position strategy
approached a known location when it was visible.

In order to orientate the robot toward a known food location, it was neces-
sary to know the robot’s current position and pose. This localization skill was
delegated to the structured exploring strategy, a strategy that used this infor-
mation to do efficient exploration. The ability to remember the feeder locations
was delegated to the approach visible feeder approach strategy.

The skill left to be implemented by this layer was the ability to turn toward
given locations.

Interaction - The approach general feed strategy inhibits the underlying
search strategies, i.e., the random walk strategy and the structured exploration
strategy. It is inhibited by the underlying strategies for approaching feeders
when found, i.e., the feeder approach element of the random walk strategy and
the approach visible feeder position strategy. It is also inhibited by the obstacle
avoidance element of the random walk strategy. The information requirements
identified three key schemas to be provided by the supporting strategies, a low
energy sense schema, a position sense schema and a feeder position memory
schema. As the top-level strategy, the approach general feeder position strategy
did not need to present any schemas to other layers.

Evaluation - The ability to immediately orientate toward known food loca-
tions at optimal times rather than waiting for these locations to become visible
should provide the robot with a performance advantage by increasing its feeding
rate. This advantage does not need any environmental features other than those
needed by its supporting strategies in order to be expressed.

Approach Visible Feeder Location The approach visible feeder location
strategy brought the robot back to a known feeder location whenever such a
feeder location was visible and the robot’s energy levels were below a given
threshold.

Skills - To follow this strategy the robot needed to be able to remember and
recognize feeder locations. This again meant that it needed to know its own
location when it encountered them. Lastly, it needed to know how to approach
things. A robot’s location was defined in terms of the visible landmarks. Hence,
the information available in a position percept also indicated which locations
were currently visible.

Support - Localization was already delegated to the structured exploration
layer. The feeder recognition and approach object competence was delegated to
a random walking strategy that would recognize and approach feeders.

The skills to be implemented by this layer was the ability to sense the current
energy level and the ability to remember feeder positions.

Interaction - Like the approach general feeder position strategy, this strat-
egy inhibits the underlying structured exploration strategy for searching. It is
likewise inhibited by the feeder approach and obstacle avoidance elements of
the random walk strategy. In addition to the position sense schema presented
by the structured exploration layer, a full feeder sense schema and an object

13



approach competence schema would be presented by the random walk layer.
Evaluation - The ability to return to known feeders when energy got low

rather than continuing exploration should give the robot a performance advan-
tage in terms of an increased feeding rate. This advantage does not need any
environmental features other than those needed by its predecessors in order to
be expressed.

Structured Exploration The structured exploration strategy lead the robot
around the given environment according to a pre-defined pattern.

Skills - We found that this strategy needed localization skills and also needed
to know how to follow a set pattern of exploration.

Support - Approaching the landmarks that defined the exploration pattern
could be handled by the object approach competence schema already delegated
to the full feeder approach layer.

The skills left to be implemented by this layer was the localization and the
ability to follow a set sequence of landmarks forming a pattern of exploration.

Interaction - Like the other search strategies, this strategy was inhibited
by the feeder approach and obstacle avoidance elements of the random walk
strategy. No new shared schemas were identified.

Evaluation - A structured search is a more efficient way of exploring an en-
vironment that a random walk, and the ability to do this should provide a per-
formance advantage in terms of an increased feeding rate. This strategy needed
landmarks to be present in the environment so that a pattern of exploration can
be defined.

Random Wandering The random wandering strategy made the robot go
forward until an obstacle was encountered and then made it turn around. The
sensor and actuator noise made this strategy relatively unpredictable. The
strategy was further divided into four basic behavioral layers: move, approach
full feeders, touch full feeders, and avoid obstacles, but for brevity we here
present these layers as one.

5.3 Implementing the Foraging and Mapping Strategies

We implemented the foraging and mapping strategies presented above starting
with the leaf strategies. In order to verify the improvements in performance for
each new strategy implemented we performed experiments that compared the
performance of each new controllers with its predecessor.

Experimental Evaluation In order to compare the quality of a strategy to
its predecessor, we ran 20 trials with each of the controllers and measured the
average feeding rate over the first two minutes. At the start of each experiment
the robot had an energy level of 1.0. Each 64 ms the energy level decreased by
0.02. When the robot was in contact with a feeder, the energy level rose to 2.0.

14



If the energy level fell to zero, the robot was considered dead and immediately
removed from the environment.

Results The random wandering behavior implemented by the base controller
relied on chance to reach different areas of the environment. This strategy
could be very inefficient. Due to the nature of this strategy, some similarities
existed between the paths taken by the robots following it. Depending on the
orientation of a robot when approaching the northwest corner, i.e., the corner
where the feeder was situated, it would turn either left or right in order not
to hit the walls. Turning left in this situation invariably meant that the robot
would not find the feeder before it ran out of energy.

For random wandering, over 20 runs, the mean feeding rate was 1.5/120
seconds with a standard deviation of 0.95/120 seconds. The dotted line in Fig-
ure V describes a typical path taken by robots following the random wandering
strategy when approaching the northwest corner. The path is typical for the
trials where the robots turned left and missed the feeder.

Figure V: Paths Taken by the Foraging and Mapping Controllers

Random Walk

Structured Exploration

Visible Feeder Position Approach

General Feeder Position approach

North

As indicated by the dashed arrow in Figure V, the pre-defined exploration
pattern for the structured explore strategy was a square along the boundaries
of the environments. This strategy enforced a right turn at every corner and
brought the robot back to the feeder at regular intervals. Over 20 trials, the
mean feeding rate for robots following the structured exploration strategy was
2.7/120 seconds with a standard deviation of 0.5/120 seconds. This feeding rate
is significantly higher than the feeding rate for the random wandering strategy
on a 99% confidence level.

15



The thin solid arrow in Figure V shows that when following the approach
visible feeding position strategy, the robots were able to head for the position
where the feeding took place as soon as it came into view. These schemas
shortened the average length of the path the robot followed to return to the
feeding position. As a result the feeding rate increased. Over 20 trials, the mean
feeding rate for robots following the visible feeding position approach strategy
was 3.0/120 seconds with a standard deviation of 0.5/120 seconds. This feeding
rate is significantly higher than the feeding rate for the structured exploration
strategy on a 99% confidence level.

Our final strategy for foraging was general feeding position approach which
allowed the robot to head for the position where the feeding took place any
time the low energy sense schema was firing. A typical path taken by the robot
when following the approach general feeding position strategy is indicated by the
thick arrow in Figure V. It illustrates how the approach general feeding position
strategy on cut short the path typically produced by the approach visible feeding
position strategy. Over 20 trials, the mean feeding rate for robots following the
general feeding position approach strategy was 3.6/120 seconds, with a standard
deviation of 0.5/120 seconds. This feeding rate is significantly higher than the
feeding rate for the structured exploration strategy on a 99% confidence level.

The performance of the different strategies are presented together graphically
in Figure VI. It shows the mean number of feeding events per two-minute trial,
for each of the strategies, with standard deviations indicated by error bars.

Figure VI: Foraging and Mapping Strategy Performances

3.0

4.0

2.0

1.0

1 2 43

Feeding frequency, 1/120s

Strategy

6 Strategies for Conflict Resolution

When two entities compete for a limited resource, there are a number of con-
flict resolution strategies available. We decided to study this domain for three
reasons: first, because of its richness in biological evidence [Enquist, 1985,
Hauser, 1996]. Second, it is inherently a multi-robot problem as opposed to

16



mapping, and, third, communication as a precursor for language is an impor-
tant element in high-level adaptive capabilities. Stylized displays are a form of
behavior that is explicitly communicative. It would be a good demonstration
of our methodology if it could provide a feasible path from reactive interaction,
via implicit communication to explicit communication.

6.1 Simulated Environment

The simulated environment in which our experiment on conflict resolution took
place was identical to the environment used for the experiment on mapping
but with an additional Khepera robot. The energy reduction rate was for this
experiment, set to 0.0, implying that none of the robots would die from low
energy levels during these experiments.

For this domain we added a strength value and an injury value to the state of
the Khepera robot as used in the mapping domain. The two robots were given
different and unchangeable strength values from the start. Injury was accrued
whenever the two robots were within a given proximity of each other. As long
as the robots remained within close proximity of each other, more injury was
received every 64 ms. The added injury was proportional to the strength of the
other robot. The initial injury level was 0.0 and if a robot’s injury exceeded a
given threshold, the robot was considered dead.

The behavioral layers for conflict resolution were added on top of the general
feeding position approach controller presented in Section 5. The new layers are
presented presented in Figure VII.

6.2 Designing Strategies for Conflict Resolution

The root strategy we considered was one where fighting was avoided between
two robots with different fighting abilities or strength by each robot signaling its
corresponding social rank. The metric used to evaluate the performance of the
conflict resolution strategies was the survival time, of the weak robot, i.e., the
amount of time it was able to keep its injury levels below the given threshold.

Stylized Hierarchy Formation The stylized hierarchy formation strategy
allowed robots to establish a strength-based hierarchy without going through a
physical test of strength. The stylized display was to remain motionless. The
period the display lasted was proportional to the strength of the robot.

Skills - In order to follow this strategy, the robots needed to be able to per-
form and recognize a display behavior, to remember their position in a hierarchy,
and to attack and avoid the opponent according to this position.

Support - During the display behavior, the stylized hierarchy formation strat-
egy would inhibit all the underlying strategies. We identified a supporting strat-
egy where a hierarchy would be formed through physical interaction, the pecking
order adherence strategy. We delegated the ability to remember social position
and act accordingly to the layer implementing that strategy. We delegated the

17



Figure VII: Behavioral Layers for Conflict Resolution

Khepera−
Memory

Display−
Sense

Pecking Order
Adherence

Reactive
Yielding

Stylised
Hiearchy Establishment

K6300Sensor
(Camera)

(Avoidance)

General Feeding
Position Approach

Strength−
Sensor

Sensor
Injury−

int

int

Sense
WeakDisplay−

Uncritical
Fighting

image

int

object

object

object

object

object

Drive

Drive
Adhering−

Establishing−

Weak−
Memory

WeakSense

KheperaSense

ApproachObject−
Competence

Uncritical−
FightingDrive

Yielding−
Drive

ability to recognize another Khepera to an uncritical fighting strategy. The skill
left to be implemented by this layer was the ability to interpret stylized displays.

Interaction - We identified a weak memory schema as a shared schema. This
schema would indicate whether the robot was weaker than its opponent. Pro-
viding the stylized hierarchy formation layer with the possibility of establishing
this memory meant that the hierarchy adherence behavior implemented by the
pecking order adherence strategy, could be reused. We also identified a Khepera
sense schema as a shared schema to be provided by the uncritical fighting layer.

Evaluation - The elimination of a physical test of strength should increase
the survival time for the weak robot by allowing it to start avoiding the strong
robot with a lower injury value. No extra environmental features were needed
for the robots to follow this strategy.

Pecking Order Adherence This strategy allowed the robots to form and
adhere to a strategy based on a physical test of strengths.

Skills - To be able to follow this strategy, the robot needed to be able to
perform a physical test of strength and to avoid the opponent if the opponent
was identified as stronger.

Support - We identified a support strategy where the robots would engage in
physical tests of fights, but where the weak robot would stop fighting or yield
only when it sensed directly that it was the weaker. This strategy was called
reactive yielding. The fighting behavior and the sense of weakness was delegated

18



to the reactive yielding strategy.
The skill left to be implemented by this layer was the ability to remember

the robot’s place in the social hierarchy.
Interaction - We chose to make the yielding behavior simply an inhibition of

the fighting behavior. As such it could be handled though drive inhibition and
no new shared schemas had to be identified. This inhibition took place only
after it had been established that the robot was the weaker than its opponent.
This solution was possible due to the underlying layers which would treat other
robots as obstacles and avoid them by default. A weak sense schema was to be
presented by the reactive yielding layer.

Evaluation - The hierarchy established allowed the weak robot to avoid the
strong robot in situations where the strong robot is visible to the weak robot
without the weak robot being visible to the strong robot. This should improve
the performance of the weak robots by reducing the frequency of fights and hence
increasing its survival time. No extra environmental features were necessary for
the robots to follow this strategy.

Reactive Yielding This strategy allowed the weak robot to abort a fight and
escape further injury.

Skills - To follow this strategy the robots needed to be able to attack and
escape from another robot. They also needed to know whether they were the
weaker or stronger robot.

Support - We identified the uncritical fighting as the supporting strategy for
reactive yielding and delegated the fighting behavior to that layer.

The skill left to be implemented by this layer was the ability to sense whether
the robot was stronger or weaker than its opponent.

Interaction - Again, the yielding behavior was an inhibition of the fighting
behavior. For this strategy the inhibition took place only when the robot could
sense immediately that it was weaker than its opponent.

Evaluation - By aborting fights, the weak robot can reduce the average dura-
tion of fights. This leads to an increased survival time. No extra environmental
features were needed for the robots to follow this strategy.

Uncritical Fighting This strategy lead the robots to attack each other on
sight and to keep on fighting until one of the robots reached the set injury
threshold, i.e., died. It was implemented directly on top of the approach general
feeder position controller presented in Section 5 and used the approach object
competence schema as a shared schema. Since we interpreted close proximity as
physical interaction, the approach object competence was sufficient as a fighting
behavior.

6.3 Implementing the Conflict Resolution Strategies

On top of the existing layers for foraging and mapping we implemented the
final solution for conflict resolution as presented in Figure VII. Starting from
the bottom, each layer was fully implemented and tested.

19



Experimental Evaluation For each strategy evaluation experiment we ran
20 trials and calculated the average survival time and its standard deviation for
the weak robot. The survival time for the strong robot was constant as it never
died.

Results The average survival time for the weak robot following the uncritical
fighting strategy was 63.4 seconds, with a standard deviation of 25.0 seconds.
The position and orientation during a typical trial for two robots following the
stylized hierarchy establishment strategy, is plotted in Figure VIII with the
strong robot represented by a solid line and the weak robot represented by a
dashed line. The x and z axis are in units of 1 meter and have Origo in the
center of the simulated environment. The positions are given in radians with 0
indicating north as illustrated in Figure V. The plot shows the typical tendency
of the strong robot to find and follow the weak until it has cornered it.

Figure VIII: Typical Robot Poses During Conflict Resolution

Strong Robot Weak Robot
X Position, m

Z Position, m

Orientation, rad

Time, s

Time, s

Time, s

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0

1

2

3

4

5

6

7

0

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 120 16040 80

40

40

80

80 120

160

160

120

The decreasing distance between the solid and the dashed lines from the
start of the trial to 120s into the trial, indicates that the strong robot is gaining
on the weak robot. In the period from 120 seconds to 140 seconds there is
not change in position, indicating that the strong robot has cornered the weak
robot. During this period the strong robot inflicts more injury on the weak
robot than vice versa due to their relative strengths. The discontinuation of the
dotted line after 140 seconds indicates that the weak robot’s injury levels reached
the set threshold and that it was removed from the environment. The average
survival time for the weak robot following the reactive yielding strategy was 73.9
seconds with a standard deviation of 37.1 seconds. This average survival time
was significantly longer than the average survival time for robots that followed
the uncritical fighting strategy, on a 75% confidence level. The average survival
time for the weak robot following the pecking order adherence strategy was 95.4

20



seconds with a standard deviation of 32.95 seconds. This survival time was
significantly longer than the average survival time for robots that followed the
reactive yielding strategy, on a 95% confidence level. The average survival time
for the weak robot when following the stylized hierarchy establishment strategy
was 104.6 seconds with a standard deviation of 54.7 seconds. This average
survival time was significantly longer than the average survival time for robots
that followed the pecking order adherence strategy, on a 60% confidence level.
The average survival time with standard deviation for each strategy are plotted
together in Figure IX.

Figure IX: Conflict Resolution Strategy Performances

80

60

100

120

140

160

40

1 2 3 4

Survival Time, s

Strategy

7 Conclusions

Section 5 and 6 presented example applications of our methodology to the prob-
lems of foraging/mapping and conflict resolution. The examples demonstrate
that it is possible to decompose complex strategies into trees of self-contained
testable supporting strategies in a way that facilitates incremental development.
The examples also demonstrate that it is possible to design partial solutions with
relatively small incremental steps between them. This is a good thing as it al-
lows frequent testing when this is desirable. Straddling several increments in
one step is always possible if a reduced testing frequency is desirable. The per-
formance evaluation experiments show how the methodology provides a simple

21



but general learning mechanisms. The adaptive solutions can make immedi-
ate use of salient environmental features to change their behavior and increase
performance relative to their less adaptive predecessors.

8 Related Work

The work presented in this article makes contributions in three main areas:
incremental development, learning, and behavior-representation. Below we dis-
cuss in detail how our work relates to other work in those areas and what we
contribute.

Incremental Development Bryson, in her PhD thesis [Bryson, 2001], de-
scribes a iterative development methodology called Behavior Oriented Design
(BOD). Our methodology is closely related to BOD in that both methodologies
decompose high-level behaviors into more basic activities. Both methodologies
are also instantiations of the traditional design-implement circle for incremental
development presented in Figure I. The main difference between our method-
ologies is that ours, being inspired by evolution, requires a tree of self-contained
solutions. We require each partial solution to be a self-contained solution to
a problem related to the root strategy. This results in partial solutions who’s
performance can be tested comparatively. This indicates that it might be possi-
ble to use our solutions to guide automated development using e.g., ER or DR.
While BOD is a more direct approach, our approach also provides solutions
with the additional qualities of high performance during learning and graceful
degradation on partial failure.

ER [Nolfi and Floreano, 2000] is a general methodology for developing bi-
ologically inspired adaptive behaviors through a process of artificial evolution.
Work on ER has traditionally been limited to demonstrating the evolution of
a specific capability such as vision rather then a series of increasingly sophisti-
cated solutions integrating multiple sensory modalities. Another active branch
of ER research is the evolution of adaptive controllers in the form of ANNs,
that are well suited for epigenetic development. It is not possible, using cur-
rently existing ER techniques, to produce controllers as specialized as the ones
presented in this paper.

DR [Weng et al., 2000] is another automated development approach. Robots
developed using this approach have been successful in learning complex tasks,
e.g., vision-based navigation. DR is based on Piaget’s theory of epigenetic
development and has produced several architectures that reproduce the staged
capabilities described by this theory. This work has produced complex robot
behavior through an incremental process starting by developing associations for
each sensing modality, progressing by developing inter-modal associations and
finally developing associations between sensors, context and behavior. Other
work on DR has learned among other things causality in billiard-ball bouncing
[Cohen et al., 2002]. However, work on DR does not provide general guidelines
on how to structure goal-oriented incremental development.

22



Efficient Learning In robotics the real time constraints make problem re-
striction crucial. Learning in BB systems has previously been restricted to a set
of separate, pre-specified behaviors [Mahadevan and Connell, 1992, Asada et al., 1995],
to multiple interacting behaviors [Stone and Veloso, 1999, Andre and Russel, 2001],
or to combining behaviors [Maes and Brooks, 1990, Matarić, 1997]. Though
these solutions use restricted problem spaces, they are based on learning al-
gorithms with long convergence times, typically Reinforcement Learning (RL).
Bryson [Bryson, 2001] proposes problem restriction principles aligned with our
methodology, where the context of a behavior restricts the learning problem
considered. Similar to Bryson’s work, our approach implements the minimal
amount of adaptivity needed to supporting a given strategy. As a result our
solutions are far less adaptive but far more efficient than solutions based on
general ML mechanisms such as RL.

Behavior Decomposition BB architectures have previously divided layers
into modules [Brooks, 1986] or schemas [Arkin, 1989], though there are also
many examples of BB architectures that do not subdivide layers [Werger, 2000,
Nicolescu and Matarić, 2001]. The ALLIANCE architecture [Parker, 1998] ex-
plicitly classifies the elements of behavioral layers into regular and motivational
behaviors. The term behaviors in the ALLIANCE architecture denotes an ele-
ment of a behavioral layer. A motivational element monitors multiple sources of
input and adjust the activation strength of a set of related, regular, elements ac-
cording to its state. Similar motivation specific elements have also been used in
the BB architecture supporting the emotion-based learning model on Kismet, a
robotics head that can make facial expressions [Breazeal and Scassellati, 1998].
The architecture used in Kismet also classifies some of its behavioral structures
as perceptory or motory. Bryson and Stein’s Basic Reactive Plans (BRPs)
[Bryson and Stein, 2001] also divide the how and the when of behaviors into
behaviors and plans respectively. BRPs however have an action selection mech-
anism based on explicit behavior priorities rather than mutual excitation and
inhibition. Our modularized behavior model is similar to the models used in
ALLIANCE and Kismet in that it separates motivation/activation and regular
elements of behavior and uses excitation and inhibition for action selection.

9 Discussion

Currently robotic systems are not so complex that the risk reduction provided
by incremental development approaches can be expected to have a major impact
on the field. However, in BB robotics there is currently a lot of reimplementa-
tion of basic skills. The work presented here contributes insight into behavior
representation that will help to standardized representations of skill modules
for incremental development. This standardization will have a great impact on
the efficiency with which new algorithms can be implemented.

Using multiple concurrent strategies of varying sophistication is an intuitive
way of ensuring performance during learning and graceful degradation. The ex-

23



amples presented here demonstrates this approach using simple learning mech-
anisms but it can also be used with more general ML techniques such as RL.
It is a natural way to provide performance while waiting for the convergence of
such methods and thus help to make these methods more generally applicable.

Finally, in order to develop increasingly complex BB systems it is necessary
to understand more about the issues concerning behavior interaction, in partic-
ular how general skill modules are shared by multiple behaviors and how they
are refined by natural incremental processes such as evolution and epigenetic
development. Using hand coded solutions, it is possible to study aspects of
these problems that are difficult to study using automated methods, e.g., issues
of skill abstraction for shared skill modules and deictic variables as presented in
this paper. The insight gained can feed back and help to improve the automated
methods.

10 Future Work

One of the challenges ahead for this work is to apply it to more complex and
demanding problems to see whether the advantages demonstrated here can be
transfered to other domains. Another interesting result of a wide application
of our methodology would be the identification of a commonly useful skill sets.
A limited set of generally useful perceptual and behavioral skills will form a
limited search space for ML techniques and will make it easier to rapidly learn
new behavioral strategies.

Another path for this work is to increase the adaptive capabilities to include
more complex forms of learning than imprinting, e.g., conditioning. We are
particularly interested in introducing associative memories in order for a robot
to learn new behavioral strategies from the available skill modules. Associative
learning would tie in with other areas of research, in particular the area of RL.

11 Summary

We present a methodology for incremental development of complex adaptive
behaviors. The work was motivated by two factors: first, the possibility of
reducing the risk of spending resources on infeasible design solutions. Second,
and more importantly, the possibility of increasing the performance levels and
fault tolerance levels of BB systems by applying multiple concurrent solutions
of different sophistication to a given problem.

Like incremental development approaches in general, our recommended pro-
cess forms a loop of design and implementation. In addition to this general pro-
cess we presented recommendations on how to construct a tree of self-contained
solutions where the less sophisticated solutions provide support to the more so-
phisticated solutions in terms of abstract modules for perceptory and behavioral
skills. We also present a modularization of behavioral layers that supports, at
the same time, abstract skill sharing and action selection through excitation

24



and inhibition.
Two demonstrations of the application of the methodology are presented.

Complex behaviors are developed incrementally and performance tested through
experiments in simulation. The demonstrations show that it is possible to con-
struct strategy trees for incremental development of complex adaptive behavior.

25



Acknowledgments

This work was done at the Machine Learning Research Group in the Department
of Computer Science, University of Bristol. It was sponsored in part by Hewlett-
Packard Laboratories, Bristol.

Webots is a commercial robot simulator developed by the MicroComputing
and Interface Lab (LAMI) at the Swiss Federal Institute of Technology, Lau-
sanne (EPLF) and distributed by Olivier Michel and the Cyberbotics Company
who generously provided us with a free student license for this work.

26



References

[Andre and Russel, 2001] Andre, D. and Russel, S. J. (2001). Programmable
Reinforcement Learning Agents. In Dietterich, T. G., Becker, S., and Ghahra-
mani, Z., editors, Proceedings of the 13th Conference on Neural Informa-
tion Processing Systems (NIPS’01), pages 1019–1025. MIT Press, Vancouver,
Canada.

[Arkin, 1989] Arkin, R. C. (1989). Motor schema-based mobile robot naviga-
tion. International Journal of Robotics Research, 8(4):92–112.

[Asada et al., 1995] Asada, M., Noda, S., Tawaratsumida, S., and Hosoda, K.
(1995). Vision-based reinforcement learning for purposive behavior acquisi-
tions. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA’95), pages 146–153.

[Beck, 1999] Beck, K. (1999). Extreme Programming Explained: Embrace
Change. Addison-Wesley, Reading, Massachusetts.

[Breazeal and Scassellati, 1998] Breazeal, C. and Scassellati, B. (1998). Infant-
like social interactions between a robot and a human caregiver. Adaptive
Behavior, 8(1):49–74.

[Brooks, 1986] Brooks, R. A. (1986). A robust layered control system for a
mobile robot. IEEE Journal of Robotics and Automation, 2:14–23.

[Bryson, 2001] Bryson, J. J. (2001). Intelligence by Design: Principles of Mod-
ularity and Coordination for Engineering Complex Adaptive Agents. PhD
thesis, Massachusetts Institute of Technology, Artificial Intelligence Labora-
tory, Cambridge, Massachusetts.

[Bryson and Stein, 2001] Bryson, J. J. and Stein, L. A. (2001). Modularity and
design in reactive intelligence. In Nebel, B., editor, Proceedings of the 17th In-
tenational Joint Conference on Artificial Intelligence (IJCAI’01), pages 1115–
1120, Seattle, Washington.

[Cockburn, 2001] Cockburn, A. (2001). Agile Software Development. Addison-
Wesley, Boston, Massachusetts.

[Cohen et al., 2002] Cohen, L. B., Chaput, H. H., and Cashon, C. H. (2002).
A constructivist model of infant cognition. Cognitive Development, 17:1323–
1343.

[Enquist, 1985] Enquist, M. (1985). Communication during aggressive inter-
actions with particular reference to variation in choice of behavior. Animal
Behavior, 33:1152–1161.

[Gould and Gould, 1999] Gould, J. L. and Gould, C. G. (1999). The animal
mind. Scientific American Library, New York.

27



[Hauser, 1996] Hauser, M. D. (1996). The Evolution of Communication. MIT
Press, Cambridge, Massachusetts.

[Larman and Basili, 2003] Larman, C. and Basili, V. R. (2003). Iterative and
incremental development: A brief history. Computer, 36(6):47–56.

[Lyons and Arbib, 1989] Lyons, D. M. and Arbib, M. A. (1989). A formal model
of computation for sensory-based robotics. IEEE Transactions on Robotics
and Automation, 5(3):280–293.

[Maes and Brooks, 1990] Maes, P. and Brooks, R. A. (1990). Learning to co-
ordinate behaviours. In Proceedings of the Eight National Conference on
Artificial Intelligence (AAAI’90), pages 796–802, Boston, Massachusetts.

[Mahadevan and Connell, 1992] Mahadevan, S. and Connell, J. H. (1992). Au-
tomatic programming of behavior-based robots using reinforcement learning.
Artificial Intelligence, 55(2-3):304–312.

[Matarić, 1997] Matarić, M. J. (1997). Reinforcement learning in the multi-
robot domain. Autonomous Robots, 4(1):73–83.

[Moore, 1996] Moore, B. R. (1996). The Evolution of Imitative Learning. In
Heyes, C. M. and Galef, B. G., editors, Social Learning in Animals: The
Roots of Culture, pages 245–265. Academic Press, San Diego, California.

[Nicolescu and Matarić, 2001] Nicolescu, M. and Matarić, M. J. (2001).
Experience-based representation construction: learning from human and
robot teachers. In Proceedings of the IEEE International Symposium on Com-
putational Intelligence in Robots and Automation (CIRA’01), pages 463–468,
Banff, Canada.

[Nolfi and Floreano, 2000] Nolfi, S. and Floreano, D. (2000). Evolutionary
Robotics: The Biology, Intelligence, and Technology of Self-Organizing Ma-
chines. MIT Press, Cambridge, Massachusetts.

[O’Keefe, 1996] O’Keefe, J. (1996). Geometric determinants of the place fields
of hippocampal neurons. Nature, 381:425–428.

[Parker, 1998] Parker, L. E. (1998). ALLIANCE: An architecture for fault toler-
ant, cooperative control of heterogeneous mobile robots. IEEE Transactions
on Robotics and Automation, 14(2):220–240.

[Pressman, 2001] Pressman, R. S. (2001). Software engineering: a practitionars
approach. McGraw-Hill, Boston, Massachusetts, 5th edition.

[Raymond, 1999] Raymond, E. S. (1999). The cathedral and the bazar. In
Raymond, E. S., editor, The Cathedral and the Bazar: Musings on Linux
and Open Source by an Accidental Revolutionary, pages 19–64. O’Reilly and
Associates, Sebastopol, California.

28



[Stone and Veloso, 1999] Stone, P. and Veloso, M. (1999). Task Decomposition,
Dynamic Role Assignment, and Low-Bandwidth Communication for Real-
Time Strategic Teamwork. Artificial Intelligence, 110(2):241–273.

[Weng et al., 2000] Weng, J., McClelland, J., Pentland, A., Sporns, O., Stock-
man, I., Sur, M., and Thelen, E. (2000). Autonomous mental development
by robots and animals. Science, 291(5504):599–600.

[Werger, 2000] Werger, B. B. (2000). Ayllu: Distributed port-arbitrated
behavior-based control. In Parker, L. E., Bekey, G., and Barhen, J., editors,
Distributed Autonomous Robotic Systems 4, Proceedings of the 5th Interna-
tional Symposium on Distributed, Autonomous Robotic Systems (DARS’00),
pages 25–34, Knoxville, Tennessee.

29


