
Distributed Multi-Robot Task Allocation

Through Vacancy Chains

Torbjørn S. Dahla, Maja J Matarićb and Gaurav S. Sukhatmeb
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Abstract

Existing task allocation algorithms generally do not consider the effects
of task interaction, such as interference, but instead assume that tasks are
independent. That assumption is often violated in multi-agent systems,
e.g., in the case of cooperative mobile robots, where interaction effects can
have a critical impact on performance. Modeling the effects of the inter-
actions within a multi-agent system, the group dynamics, is difficult due
to their complexity. The same complexity also makes it difficult to pro-
gram, by hand, optimal solutions to multi-robot task allocation (MRTA)
problems. We formalize the concept of group dynamics in the traditional
framework of scheduling and show that task allocation in multi-agent sys-
tems with significant performance effects from the group dynamics is an
NP -complete problem. We then present a simplified model of task alloca-
tion in multi-agent systems based on vacancy chains. A vacancy chain is
a resource distribution process commonly found in nature. Its simplicity
and robustness inspired us to use it as a basis for a new model of task allo-
cation with a related MRTA algorithm, both are presented in this article.
The new algorithm is sensitive to interaction dynamics without involving
the full complexity of the problem. The algorithm uses distributed rein-
forcement learning to make interference-sensitive estimates of task utilities
and relies on stigmergy to produce optimal allocations. We validate our
simplified model by demonstrating, in simulation, that the predicted al-
locations are produced by our algorithm. We also present experimental
evidence that the algorithm can handle heterogeneous groups of agents
where individual performance levels may differ.
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1 Introduction

Existing task allocation algorithms generally assume task independence, i.e.,
they do not consider explicitly synergistic or interference-related effects on per-
formance. Task independence facilitates optimal task allocation, and in some
problem domains it is a reasonable assumption to make. For a large number of
multi-agent systems, however, it is generally not valid to assume that tasks are
independent, e.g., in groups of mobile robots, the effects of interaction among
robots working on different tasks, i.e., the group dynamics, commonly have a
critical impact on performance. Although we use MRTA as a particular problem
domain in this article, the results are also relevant to all multi-agent systems
where there are significant effects of interaction on performance. This is the
case in all domains where there is a limitation on the number of agents that
can work on the same task in parallel without interfering with each other, e.g.,
concurrent accesses to resources over a limited communication network would
create interference effects similar to the effects produced by the limitation of
available space in multi-robot systems.

Using scheduling [7] as a formalism for task allocation, we show that, in
domains where the group dynamics have a significant effect on performance,
task-allocation is NP-hard. This complexity implies that seeking optimal so-
lutions for on-line systems is infeasible and that we instead need to look for
helpful heuristics and practical ways of restricting the problem. To put this
work in context we review previous work on MRTA with a particular focus on
approaches that use machine learning methods. We also review previous work
on modeling group dynamics. As a way of restricting the problem, we present
a model of task allocation in multi-agent systems as task allocation through va-
cancy chains (TAVC). The model simplifies the general task allocation problem
by breaking down system performance into individual robot contributions. This
has allowed us to use the model as a basis for a distributed, communication-free
MRTA algorithm. We show that when each robot continuously estimates task
utilities locally, solutions reliably emerge which are optimal according to the
TAVC model. We demonstrate that the vacancy chain algorithm can improve
the performance of a group of robots on a cooperative prioritized transportation
problem beyond what is possible with hand-coded solutions. We also demon-
strate that the vacancy chain algorithm is sensitive to different performance
levels within a group, making it suitable for heterogeneous groups of robots.

2 Motivation

MRTA is a particular instance of the more general problem of task allocation in
multi-agent systems. Here we show that task allocation in multi-agent systems
is NP-complete when the performance-related effects of the group dynamics are
significant.

Gerkey and Matarić [12] presented a taxonomy of MRTA problems over
three dimensions: single-task robots vs. multi-task robots, single-robot tasks vs.
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multi-robot tasks, and instantaneous assignment vs. time-extended assignment.
They also discussed several formalisms for expressing multi-robot task allocation
problems. We explore further the scheduling formalism for task allocation and
formalize the role of group dynamics. When task allocation in multi-agent
systems is formalized as scheduling, the terms job and task, and the terms
machine and agent/robot, become interchangeable. Heretofore, we will use the
terms job and machine when we relate the task allocation problem to other
scheduling problems and the terms task and robot when we discuss the specifics
of MRTA.

2.1 Problem Complexity

In an idealized form, MRTA is the problem of optimizing the allocation of tasks
to robots over time, with respect to some given criteria. MRTA can formal-
ized within the existing framework of scheduling [7], a well studied problem
domain. Defining MRTA problems in terms of a scheduling formalism allows us
to consider what classes of algorithms are suitable.

Scheduling problems are described in terms of a set of machines, Mj(j =
1, ...,m), that process a set of jobs, Ji(i = 1, ..., n). Jobs may consist of a set
of operations, Oi1, ..., Oi,ni

. If any job can run on any machine, the machines
are called parallel. Parallel machines are the most general instance of a class
called multi-purpose machines, (MPM). In MPM, a job can be processed
on any machine which has the appropriate tools. If the machines in Mj are
used simultaneously, the scheduling problem is called a multiprocessor task
scheduling problem. In the simplest case where ni = 1, each job, Ji, has a
related processing requirement, pi, and a cost function, fi(t), reflecting the
cost of completing Ji at time t. The cost function, fi, may use a due date,
di, and a weight, wi. Further constraints on precedence, preemptability, and
batching of jobs are also common. The machine environment is also subject to
a number of further formalizations. Parallel machines, for example, are divided
into three classes: identical machines, P, uniform machines, Q, and unre-
lated machines, R. For identical machines, P, the processing time of a job, Ji,
is the same on all machines, Mj , i.e., pij = pi. For uniform machines, Q, each
machine has a related speed, sj , and the processing time of a job is dependent on
the machine, i.e., pij = pi/sj . Lastly, for unrelated machines, R, the processing
time may be dependent on the machine-job combination, i.e., pij = pi/sij .

A common optimization criterion in scheduling is the weighted total flow
time, denoted

∑

wiCi, where Ci is the finishing time of each job, Ji. Other
common optimization criteria are defined with respect to other values than the
total flow time, e.g., job earliness, job tardiness, or deviation from deadline.
Scheduling problems in general can be denoted by three main features: the
class of machines, the attributes of the jobs, and the function to be optimized,
e.g., Q | pi = p |

∑

fi, denotes a problem with uniform machines and uni-
form task processing times, where the value to optimize is the sum of the cost.
Some scheduling problems are solvable in polynomial time. Other scheduling
problems, such as finding the minimal weighted total flow time for identical
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machines, P ‖
∑

wiCi, have been shown to be NP-hard [7].

2.2 Formalizing the Effects of Interaction

For a given static environment, a group’s dynamics depend, to a large degree,
on what machines the different jobs are allocated to, i.e., the allocation. We
formally define an allocation to be a function mapping machines to jobs. For m
machines and n jobs, this function can be represented as a vector A of size m,
where vector element i indicates what job is allocated to machine i. We use ∅ to
indicate a machine that has not been allocated a job. Intuitively, an allocation
can be seen as a slice of a schedule as represented by a Gantt chart [7]. Figure 1
illustrates this for two allocations, A1 and A2. The allocations are indicated by
the dashed lines through a job-oriented schedule. The corresponding allocations
are presented in Equations 1 and 2.

J1
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J4

M1 M1

M1

M1

M2

M2

M2

M3

M3

t

A1 A2

Figure 1: Job-oriented Gantt chart

A1 = [M1,M2,M3, ∅] (1)

A2 = [∅, ∅, ∅,M1] (2)

2.3 Proof of Complexity

We suggest that the effects of group dynamics on job processing times i can
be included in the formal scheduling framework by making the job processing
time, pi, from the time the job is started, ts, to the time the job is finished, tf ,
a function of the allocations during this time, Ats,tf

, as shown in Equation 3.

pi = gi(Ats,tf
) (3)

We call the function g the interaction function. We call the class of machines
whose performance is significantly affected by group dynamics interaction-dependent
machines and denote the class using the subscript ID. The interaction function,
as a formalization of group dynamics, captures much of the complexity of group
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dynamics in otherwise static environments such as transportation between sta-
tionary locations. It is worth mentioning that this is not a suitable formaliza-
tion of group dynamics in more dynamic problems, e.g., problems where the
processing times are also dependent on a changing spatial distribution of jobs.
An example of such a problem is cooperative tracking and pursuit [18].

Theorem 1 RID ‖
∑

wiCi ∈ NP-hard

Proof 1 The optimization problem R ‖
∑

wiCi describes a set of unrelated
machines, R, a set of non-preemptable jobs, Ji, with related weights, wi, and
processing times, pi. The machine speeds, sij, are job dependent. Unrelated
machines are a sub-class of interaction-dependent machines in that the func-
tion describing the task processing time, pij = pi/sij , is a deformed interaction
function that is only dependent on the task and machine in question and not on
what tasks are allocated to the other machines. We can create, in polynomial
time, a corresponding problem RID ‖

∑

wiCi with an identical set of machines,
RID, an identical set of weighted jobs, but with task processing times described
by the interaction function gi(Ats,tf

).
The assumption that the machines in the original problem are unrelated, but

not interaction-dependent, implies that the value of gi(Ats,tf
) is only dependent

on which machine Mj, the related job, Ji, is allocated to in the relevant al-
locations Ats,tf

. For non-preemptable jobs, Mj will be the same for all those
allocations. The interaction functions gi(Ats,tf

) can be produced in polynomial
time, by finding which machine job, Ji, is allocated to in the initial allocation,
Ats

. The job, Ji, and machine Mj, can then be used to find the machine speed
using the given function, pi/sij .

An algorithm solving R ‖
∑

wiCi problems uses sets of machines, sets of
jobs, and optimization criteria that are identical to the ones used by an algo-
rithm for solving the corresponding S ‖

∑

wiCi problems. The only difference
between the problems is the representation of the function for job processing
times. We have shown how the function pi/sij can be accurately represented in
the more general form gi(Ats,tf

), and that the transformation can be done in
polynomial time. Hence, an optimal solution to the new problem would be an
optimal solution to the original problem. This again shows that R ‖

∑

wiCi,
which is NP − hard, reduces to RID ‖

∑

wiCi which, ipso facto, must also be
NP-hard. 2

3 Related Work

This work touches on two important larger areas of research; task-allocation
and the modeling of group dynamics. In this section we review previous work
in these two areas and relate it to the work presented in this article.
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3.1 Multi-Robot Task Allocation

A number of algorithms for MRTA already exist. Here we review a selection
of the most prominent of these algorithms and discuss how their different ap-
proaches to group dynamics affect their applicability in domains where the ef-
fects these dynamics have a significant impact on group performance.

Botelho and Alami’s M+ algorithm [4] used a task allocation protocol based
on the Contract Net protocol with formalized capabilities and task costs. The
need to pre-define the capabilities and costs limits the applicability of the M+
algorithm to domains where these are known. It might, however, be possible
to use the M+ algorithm with local utility estimates based on ML rather then
hand-coded capabilities and costs.

Gerkey and Matarić’s MURDOCH system [11], also based on the contract
net protocol, used a set of metrics to locally score the suitability of the partici-
pating robots, a publish/subscribe protocol for communication, and an auction
mechanism for task allocation. As with the M+ algorithm, the hand-coded
suitability estimates have limited applicability, but the MURDOCH system can
also use local task utility estimates based on ML.

Werger and Matarić’s work on the Broadcast of Local Eligibility (BLE) algo-
rithm for task allocation compares locally decided eligibilities to allocate tasks
using Port Arbitrated Behaviors [32], an inter-robot coordination mechanism
based on a fully connected communication network. Their example of Coopera-
tive Multi-Robot Observation of Multiple Moving Targets used spatial proximity
as a measure of eligibility, but BLE can also use eligibility estimates based on
ML.

In the L-ALLIANCE work by Parker [28], each robot explicitly estimates
its own performance and the performance of other robots on selected tasks and
uses these values to reallocate tasks by taking them over or acquiescing. The
L-ALLIANCE algorithm uses local utility estimates to make local allocation de-
cision, but needs pre-programmed estimation procedures that reduce the general
applicability of this algorithm.

We are not aware of any existing general MRTA algorithms that explicitly
handle the effects of group dynamics. Consequently, the TAVC algorithm rep-
resents an alternative for domains where the effects of these dynamics have a
significant impact on system performance.

Learning Approaches to Task Allocation One way of dealing with NP-
hard problems is to use heuristic algorithms that produce suboptimal but sat-
isfactory solutions. Learning such heuristics in the domain of scheduling is a
well-studied problem. Here we review a selection of successful uses of machine
learning (ML) as a way of finding heuristics for scheduling. We also discuss the
applicability of these algorithms in domain of MRTA.

Zhang and Dietterich [34] presented a RL approach to scheduling that learned
domain specific heuristics for the scheduling procedure. The state space con-
sisted of possible schedules and actions were possible changes to the schedules.
The system learned what changes would quickly create feasible schedules with
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maximized capacity utilization. The problem domain considered was space shut-
tle payload processing.

Zomaya et al. [35] presented another algorithm for learning scheduling
heuristics. Their algorithm learned dynamic scheduling, i.e., scheduling when
there is no a priori knowledge about the tasks. It used a back-propagation neu-
ral network and a history queue that functions like an eligibility trace to learn
how to associate a set of job parameters with a set of machines.

Both above algorithm are general and applicable to all scheduling problems.
However, they rely on a centralized learning mechanism, which can fail critically
due to robot breakdown and also does not scale easily to large groups.

Brauer and Weiß [6] used the multi-agent learning paradigm to distribute
the learning of heuristics for scheduling a set of multi-operation jobs over a
set of machines. The operations were totally ordered and each operation could
only be performed by a subsets of machines. Using RL, each machine estimated
the efficiency of the possible predecessors and together the machines learned
to improve the total production rate from an initial state where all machines
were assumed to be equally efficient. Brauer and Weiß also showed that the
learning allowed the system to adapt to machine breakdowns. This algorithm,
however, is restricted to completely ordered jobs and this limits its applicability
to general scheduling and task allocation problems.

Blum and Sampels [3] studied different pheromone representations in ant
colony optimization of first order job shop scheduling. Each job traversed a
set of machines by stochastically selecting machines in accordance with a given
set of constraints on the job’s operations. Throughout the traversal, the sys-
tem updated a pheromone trace, effectively learning environmentally embedded
heuristics for scheduling. The different pheromone representations allowed the
system to estimate utilities for different combinations of machines, including
estimating the utility of a machine in isolation and the utility of a machine de-
pending on the last machine visited. This algorithm, however, is limited to jobs
that consist of multiple operations. It is difficult to see how a similar pheromone
trail could be used successfully as a general scheduling algorithm.

Tangamchit et al. [31] used distributed RL on a set of robots to allocate
patrolling tasks. Each robot locally estimated the utility of a set of patrolling
points and together learned to divide the set of point between them in an optimal
manner. Tangamchit et al. also used local and global proximity measures as
heuristics for action selection in order to speed up learning. The specificity of
the spatial heuristics limits the applicability of this algorithm to general task
allocation problems.

The work reviewed above demonstrates the use of ML techniques to learn
successful heuristics for scheduling. The heuristics can be centralized, environ-
mentally embedded, or distributed. However, the domains considered in all of
the work reviewed above, except for the work by Tangamchit et al., do not
have significant effects from group dynamics. In spite of this, all the learning
algorithms reviewed above would likely improve a group’s performance in the
presence of significant effects from group dynamics, as they in general learn
where to allocate jobs according to feedback based on processing time. The
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advantage of our vacancy chain algorithm over existing learning algorithms for
scheduling is the combination of its general applicability and its distributed
learning mechanism.

Finally, since our initial presentation of the TAVC algorithm [10], Low et
al. [22] have presented a similar self-organizing algorithm for ant-based MRTA.
The approach taken by Low et al., like ours, uses a locally estimated interference
indicator which they call encounter patterns. Their self-organization also works
on the principle of stigmergy. The results presented by Low et al. support our
claims we make about the reliability and dynamic properties of such algorithms.
Similar results have also been reported by Labella et al. [19] using a swarm-
based robot control.

3.2 Modeling Group Dynamics

The interaction function we defined in Section 2.1 describes the effects of all
possible allocations on individual job processing times. Such a description pre-
supposes that we can model these effects in a way that lets us identify the
relevant times. This presumption, however, is too optimistic. In this section we
review previous work on modeling the effects of interaction and discuss how our
model fits into the traditional taxonomy.

In groups of mobile robots, we term the internal interactions between mem-
bers of the group the group dynamics. The group dynamics can help explain
group-level behavioral features created by the presence of multiple robots, e.g.,
interference, when the robots have to spend time avoiding each other rather than
following the paths that would be optimal in single-robot systems. The presence
of multiple robots very commonly has a negative effect on performance in terms
of interference. Cooperation, on the other hand, produces group dynamics that
have a positive effect on performance. When group dynamics have a major
effect of performance, understanding and modeling these dynamics is necessary
in order to predict the value of different schedules. In embodied systems such
as mobile robots, there is significant uncertainty related to interaction with the
real world in terms of accuracy of perception and effects of actions. A model of
the dynamics within a group of mobile robots is a model of several interacting
systems, each with a significant level of inherent unpredictability. This limits
the possible accuracy of any formal model.

Models of group dynamics have been divided into microscopic, which may
or may not be simulation-based, and macroscopic [20]. Microscopic models
explicitly represent each agent. Simulation-based models simulate the actions
taken by each of the agents so that properties of the system can be recorded as
the agents interact. Macroscopic models directly describe properties to systems
on the basis of abstract features such as the number and general distribution of
agents. Below we review the most relevant work on producing and using explicit
models of group dynamics to improve group performance.

Microscopic Models Game theory [26] is an abstract model of multiple inter-
acting agents as players in formalized n-person stochastic games. Game theory
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traditionally represents each player in terms of his/her strategy for playing a
given game and its related payoff matrix for the possible moves. On the basis
of these factors, game theory describes some of the resulting features of the
ensuing games, e.g., their optimality and stability. A game theoretic approach
to modeling group dynamics requires that we know the relevant payoff matri-
ces. Unfortunately, this information is not known in most non-trivial multi-
robot systems. To overcome unknown payoff matrices, Littman [21] presented
the Minimax-Q algorithm which is guaranteed to find the equilibrium of any
stochastic game. As a general payoff policy for n tasks and m robots is of size
nm, it is not feasible in general to estimate the payoffs for each state/action
combination. Bowling et al. [5] presented experimental data demonstrating
how a reinforcement learning (RL) algorithm based on policy gradient ascent
and the WoLF (Win or Learn Fast) principle for adjusting the learning rate can
overcome this complexity. We discuss our approach to MRTA in terms of game
theory in more detail in Section 7.

Simulation-Based Models Goldberg and Matarić [14] developed Augmented
Markov Models, transition probability matrices with additional temporal infor-
mation, to learn statistical models of interaction in a space of abstract behaviors.
They also used these models to maximize reward in a multi-robot mine collection
task.

Balch et al. [2] studied live insect colonies and constructed three-dimensional
histograms of insect presence over a discretized area. The work was a step
toward a long term goal of combining spatio-temporal models with Behavior
Hidden Markov Models for behavior recognition [16] in order to recognize colony
behaviors.

Yan and Matarić [33] have attempted multi-level modeling of group behav-
iors from spatial data describing both human and robot activity. Like Balch et
al., they used three-dimensional histograms to recognize and describe different
activity distributions as produced by underlying behaviors.

Seth [29] pointed out the distinction in biology between ‘phenomenological’
and ‘mechanistic’ models of interference, where the former identifies mathe-
matical relationships between intake rates and agent density in empirical data
while the latter constructs individual-based models with pre-specified rules for
agent behavior. This distinction corresponds closely to that between macro-
scopic and simulation-based models used in robotics. Mechanistic models allow
a derivation of the interaction between agent density and rule application with
respect to intake rates. The phenomenological models assume that agents al-
ways optimize their individual intake rates. They also assume unstructured
environments. These assumptions are often invalid both in biological systems
and in the multi-robot task allocation domain. As an alternative to the tradi-
tional biological models, Seth presents a simulation-based model using genetic
algorithms to evolve foraging behaviors for multiple agents in spatially explicit
environments. The evolved systems are able to reproduce interference func-
tions previously described in field studies of insects, but not reproduced by
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phenomenological models.

Macroscopic Models Matarić [23] proposed a macroscopic model of inter-
ference as an estimate based on group density. Group density is defined as the
ratio between the agents’ footprints and the available interaction space. An
agent’s footprint is its sphere of influence, including factors such as geometry,
motion constraints, and sensor range. If only the number and size of the agents
are used, a mean free path can be computed and used to estimate the number
of expected collisions for agents executing random walks.

Lerman et al. [20] studied three different types of models of cooperation and
interference in groups of robots: sensor-based simulations, microscopic numeri-
cal models, and macroscopic numerical models. They used differential equations
to model the group dynamics on a macroscopic level and showed that the three
different models produced corresponding results. Unlike the sensor-based sim-
ulation and the microscopic numerical model, the macroscopic model had the
advantage of being very fast and independent of the number of robots modeled.
To make a macroscopic model tractable, however, many simplifying assumptions
were necessary.

Macroscopic or phenomenological models are not generally sophisticated enough
for optimizing specific task allocation algorithms. In particular, Matarić’s model
for estimating interference does not consider synergistic effects or environmental
complexity. The differential equation models produced by Lerman et al. sim-
ilarly assume uniform distributions of robots and tasks. The simulation-based
models or mechanistic models produce problem-specific solutions, but the time
needed to construct those renders them unsuitable for use in MRTA algorithms.
Currently there are no models of the effects of group dynamics with the speed,
generality, and predictive accuracy necessary for specifying the effects of inter-
action on task processing times in MRTA problems with the aim of constructing
optimal schedules. Simulation-based models are in general too slow while macro-
scopic mathematical models make too many simplifying assumptions to be of
predictive use.

4 Task Allocation through Vacancy Chains

To address the two main problems of task allocation in multi-agent systems
where the effects of the group dynamics are significant; problem complexity,
as discussed in Section 2.1, and the modeling of group dynamics, as discussed
in Section 3.2, we developed the TAVC model of task allocation. We used the
model TAVC model to develop the TAVC algorithm for MRTA.

4.1 Vacancy Chains

The inspiration for our adaptive task allocation algorithm is the vacancy chain
process [8], through which resources are distributed to consumers. The typical
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example is a bureaucracy where the retirement of a senior employee creates a
vacancy that is filled by a less senior employee. This promotion, in turn, creates
a second vacancy to be filled, and so on. The vacancies form a chain linked by
the promotions. The resources distributed in this example are the positions and
the consumers are the employees.

The general process of distributing resources in this way has been recognized
in many different domains. It was originally reported in human populations
relating to houses and apartments as well as to jobs in bureaucracies. Chase [8]
proposed that major human consumer good such as cars, boats, and airplanes,
also move through vacancy chains and that vacancy chains are common in other
species such as the hermit crab, the octopus and different species of birds. In
the case of the hermit crab, the empty gastropod shells they carry around as
portable shelters are distributed through vacancy chains.

Chase lists three requirements for resource distribution through vacancy
chains:

1. The resource must be reusable, discrete, and used by only one individual.

2. A vacancy is required before an individual takes a new resource unit, and
individuals must need or desire new units periodically.

3. Vacant resource units must be scarce, and many individuals must occupy
suboptimal units.

The vacancy chain resource distribution mechanism is both simple and pow-
erful. It is based on stigmergy, unintentional communication between the con-
sumers through their effects on the environment [17]. This makes distribution
through vacancy chains robust and efficient in large groups/societies.

While distribution through vacancy chains ensures that the most attractive
resources are consumed, it does not, like more sophisticated resource distribution
mechanisms, take into account the quality of the consumer. As such, the vacancy
chain distribution process can not exploit the possible advantages of distributing
particular resources to particular consumers. The vacancy chain distribution
mechanism treats all consumers as equals. In terms of task allocation, the
vacancy chain distribution algorithm does not guarantee optimal allocations as
it does not consider possible differences in machine speed. Our initial study of
vacancy chain distribution reflects this fact by considering only homogeneous
groups of robots.

4.2 The Vacancy Chain Model

Inspired by the vacancy chain process we developed a formal model describing
how system performance is influenced by the allocation of tasks to machines for
spatially classifiable tasks. According to the TAVC model, any number of robots
can be assigned to tasks from a given class. When a j’th robot is assigned to a
task from a class, i, we say that service-slot (i, j) is filled. The service-slots are
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the resources that are distributed among the individuals. The individuals are
the robots.

A particular number of homogeneous robots, j, servicing the same class of
tasks, i, will have a task processing frequency, ci,j , dependent on the degree to
which the robots are able to work concurrently without interfering with each
other. The difference in task processing frequency, together with the task value,
wi, define the contribution of the last robot added, or the last service-slot filled,
to the total system performance. We call this contribution, which can be nega-
tive, the slot-value, si,j . The formal definition is given in Equation 4.

si,j = wi(ci,j − ci,j−1) (4)

When assigning an additional robot to a task leads to a decrease in the task
processing frequency, the slot-value correspondingly becomes negative. When
all the available service-slots have negative values, we say the task is saturated.
If all the tasks are saturated, the system is saturated.

According to the TAVC model, an allocation is optimal when it maximizes
the sum of the filled service slots. When the slot values decrease monotonically,
optimizing the group performance becomes identical to optimizing the value
of the individual slots. With spatially classifiable tasks and given the relevant
slot-values, a group of robots can optimize the value of completed tasks over
time, i.e., the throughput, by allocating robots to tasks or service-slots in order
of decreasing slot-value. Note that this problem does not have the greedy-choice
property as slot-value does not correspond to task-value and system performance
is not necessarily optimized by allocating tasks from the class with the highest
related value to all the robots. The total system performance or throughput
value, T , for n robots, is simply the sum of the individual contributions as
stated in Equation 5.

Tn =
∑

i

∑

j

si,j (5)

In these kinds of problems, the task allocation algorithm can be distributed
by letting each robot optimize the value of the service-slot it occupies.

In a scenario where the service-slots are allocated optimally, a failure in a
robot will result in an empty service-slot. If the value of the vacant slot is
greater than the value of one of the other occupied service-slots, the vacant slot
will have to be filled in order to restore optimal allocation. Expressed in vacancy
chain terminology, a vacant service-slot is a resource to be distributed between
the robots.

4.3 The Complexity of TAVC

TAVC reduces the complexity of the general MRTA problem by introduces sev-
eral simplifications. The most important simplification is the restriction that
jobs are spatially classifiable. This property is formalized below. Initially we also
look only at homogeneous robots, but in Section 5.4 we relax this restriction
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and report experimental results on TAVC in groups of heterogeneous robots.
Both these simplification facilitates finding good solutions using distributed RL
without simplifying the problem complexity.

Spatially Classifiable Jobs Such jobs can be divided into a set of classes,
Kk, where the interactions between machines working on tasks in different
classes have no significant effects on the groups’ performance. In terms of
scheduling, we denote spatially classifiable jobs with sc. The problem of op-
timizing the weighted total flow time in a system with interaction-dependent
machines and spatially classifiable jobs is denoted RID | sc |

∑

wiCi. One
example of such problems is when classes of jobs take place in spatially sepa-
rate areas. For such jobs, Ji, the processing time is a function of the effects of
the interaction between the machines currently allocated to jobs in that class,
Ats,tf ,k, as expressed in Equation 6.

pi = gi(Ats,tf ,k) (6)

The allocation of robots between jobs of other classes is not relevant. By
the same reasoning as with general interaction-dependent jobs, it can be shown
that scheduling spatially classifiable jobs over interaction-dependent machines
is an NP-hard problem.

Homogeneous Robots Within the class of interaction-dependent machines
processing spatially classifiable jobs, we restrict ourselves further to looking at
problems where the machines are identical or homogeneous. In this case, the
interaction function is dependent only on the number of robots, mk, currently
working on jobs in each class, Kk. The job processing time for this class is given
in Equation 7.

pi = gi(mk) (7)

The problem of scheduling with two or more identical machines, P2 ‖
∑

wiCi, is known to be NP-hard [7]. In this problem, the job processing
time, pi, is only dependent on the job, Ji. By the same reasoning as with
unrelated interaction-dependent machines, it can be shown that P2 ‖

∑

wiCi

reduces to PID2 ‖
∑

wiCi, i.e., scheduling spatially classifiable jobs over two or
more identical interaction-dependent machines. Hence, PID2 ‖

∑

wiCi is also
NP-hard.

4.4 The TAVC Algorithm

Reinforcement learning (RL) provides a way to improve on hand-coded solu-
tions. Such improvements are particularly effective for problems where it is
hard for human programmers to identify optimal solutions. One such problem
is MRTA, where, as discussed in Section 3.2, the group dynamics make it dif-
ficult to identify optimal allocations. We have previously studied the use of
distributed RL as a way of optimizing the performance of multi-robot systems
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in an interaction-sensitive manner [9]. Our TAVC algorithm [10] is a specializa-
tion of that work for MRTA. In the TAVC algorithm, an action, as known from
the RL literature, corresponds to a task, as known from the MRTA literature.
Each robot keeps local estimates of task utilities in form of Q-values, and choose
its tasks using an ε-greedy action selection function.

Q-learning is not sensitive to the frequency of rewards. Hence, the estimated
values of actions do not necessarily correspond to their contribution to perfor-
mance over time. In order to use Q-learning to optimize performance over time,
it is necessary to make the temporal aspect of performance explicit in the re-
ward function. Such a reward function, using the last task processing time, t,
and task value, wi, is given in Equation 8.

r = wi/t (8)

This reward function promotes the actions with the highest contributions
to the system performance because these will on average provide a higher re-
ward. If a robot consistently occupies a service-slot that is suboptimal due to
too much interference, the increased average traversal time will reduce the av-
erage reward for that slot below the average reward of the optimal service-slots.
This change in average reward will attract the robot back to an optimal slot.
Equation 9 clarifies the relationship between the definitions above by expressing
the relationship between the individual throughput, Ti, the weighted differences
in task completion frequencies, the weighted average task processing times and
the average rewards, for j robots servicing a given task, i.

Ti =
∑

j

si,j = wi

∑

j

(ci,j − ci,j−1) = wi

∑

j

1

ti,j
=

∑

j

ri,j (9)

4.5 Controller Architecture

All the robots in our demonstration used the same behavior-based controller
[24]. Importantly, however, our TAVC algorithm is independent of the underly-
ing architecture, being defined purely in terms of distributed RL over problem
states and task utilities. Based on individual experience, the robots learned to
specialize but they always retained a level of exploration allowing them to find
and fill new vacancies.

The State/Action Space Each controller in our experiments had a set of
pre-programmed high-level behaviors. Each behavior corresponded to servicing
one of the available tasks and consisted of multiple shared lower level behaviors.
The low-level behaviors were as follows:

• obstacle avoidance: avoided obstacles detected (by laser range finder)
in the desired path.

• visible target approach: approached the desired target when it was
visible (to the laser range finder).
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• target location approach: approached the location of the desired target
when the target itself was not visible.

• wall following: followed the walls to the first available target when the
desired target was not visible and localization (based on odometry) was
deemed to be inaccurate.

The localization was deemed to be inaccurate whenever the desired target
was not visible, but should have been so according to the robot’s estimated
position and orientation. On encountering a target, the localization estimate
was reset and again deemed to be accurate.

Individual Learning The robots were homogeneous with respect to hard-
ware configuration and control algorithms. Each robot used RL to associate the
currently observed problem state with the available actions, i.e., task-related
behaviors. Over time, the RL differentiated the group by specializing robots on
different tasks. The robots used temporal difference Q-learning [30] to associate
the different states with one of the high-level task-related behaviors. The Q-
tables ware initialized with random values between −0.1 and 0.1, the learning
rate α was set to 0.1, and the discount factor γ was set to 0.95.

The input- or state-space reflected which circuit the robot had used for its
last traversal. This allowed the robots to learn policies that were not dedicated
to one circuit. The learned policies could switch between circuits in order to
construct optimal task sequences. In spite of this, the robots consistently learned
a set of policies dedicated to a single circuit.

The action space corresponded to the available tasks. For the experiments
validating the TAVC model we used a greedy-ε action selection strategy [30],
where ε was set to 0.1. Because we wanted the system to remain adaptive to
changes in the environment, we did not decrease ε over time, as is common.

Softmax Action Selection as a Performance Differentiator When robots
keep a set of task related utilities, different functions can be used to select the
next task to undertake based on these utilities [30]. With a Greedy-ε function,
all the tasks, apart from the one with the highest utility, have equal proba-
bility, ε, of being explored. With a softmax function however, the probability
of trying a suboptimal task is correlated with the relative estimated utility of
that task. Using a Boltzmann softmax function on a task-selection level, has
reliable effects on an inter-robot level, where it functions as a mechanism for
allocating high-value tasks to high-performance robots. A robot that on aver-
age can service tasks in time p will have a difference in estimated task utility
that correlates with the expression wh−wl

p
where wh and wl are the values of

high- and low-value tasks respectively. A fast robot with a lower average ser-
vice time p will have a correspondingly higher difference between the estimated
utility of high- and low-value tasks. Using a softmax action selection function,
this greater difference in estimated utility theoretically translates into a greater
probability of servicing high-value tasks. Such persistence will lead to the fast
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robots servicing high-value tasks and may, depending on the group dynamics
and the task values, lead to the slow robots servicing low-value tasks.

5 Evaluation

In order to evaluate the TAVC model and the TAVC algorithm we have con-
ducted several experiments in the domain of prioritized transportation. First
we conducted experiments to validate the TAVC model of task allocation and
to verify the advantages of the TAVC algorithm. Second, we conducted an
experiment which demonstrated that the TAVC algorithm is sensitive to dif-
ferent levels of performance among the robots and hence could be applied to
heterogeneous groups of robots.

5.1 The Prioritized Transportation Problem

Cooperative transportation is a MRTA problem where group dynamics can have
a critical impact on performance. It is also possible to construct spatially clas-
sifiable instances of this problem, which allows us to reduce the complexity of
the group dynamics. This reduced complexity facilitates the initial study of
algorithms for dealing with group dynamics in MRTA.

In the basic transportation problem, a group of robots traverse a given envi-
ronment in order to transport items between the sources and the sinks. We call
the time taken to traverse the environment once from a sink via a source and
back to a sink the traversal time. To perform optimally on this task the robots
must maximize the number of traversals in general. The basic transportation
problem [9] is one of the sub-problems of foraging [1, 15, 27]. If the locations
of sources and sinks are given, the foraging problem is reduced to a problem of
transportation. Here we present the prioritized transportation problem, which
generalizes the basic transportation problem to problems where the sources and
sinks are divided into sets of different priority. Cooperative transportation is a
general MRTA problem; the work on prioritized transportation presented here
thus provides insights into the behavior of practical multi-robot systems in gen-
eral.

When there is a source close to each sink and sinks are far apart, the opti-
mal allocation is to have robots distributed over the local source/sink pairs or
circuits, so as to avoid the increased traversal time implied by crossing between
circuits. To optimize its performance on the prioritized transportation problem,
a group of robots must strike the correct balance between different target values
and different traversal times, as defined by the amount of interference on each
circuit. We consider fetching and delivering one puck to be one task. In terms
of scheduling, each transportation task corresponds to a job and the traversal
times correspond to job processing times. The value of a task/job corresponds
to its weight. The robots correspond to machines and, since their allocation
has a significant effect on the performance of the system, the robots/machines
are interaction-dependent. When the sources and sinks are distributed so as to
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make the tasks/jobs spatially classifiable, the problem of optimizing through-
put in prioritized transportation is an instance of either RID | sc |

∑

wiCi

or P2ID | sc |
∑

wiCi, according to whether the robots are heterogeneous or
homogeneous. In Section 2, we showed both of these problems to be NP-hard.

5.2 The Simulated Environment

The experiments were done in simulation using the Player robot device server
and Stage simulator [13] software platform. Controllers written for the Stage
simulator have been repeatedly shown to work with little or no modification
on Pioneer mobile robots. The robots in the experiments were simulated Pio-
neer 2DX robots with SICK laser range-finders and PTZ color cameras. Each
robot wore colored markings that could be recognized using ActivMedia’s Color-
Tracking Software (ACTS). The prototype markings as they appear on a real
Pioneer 2DX are shown in Figure 2.

Figure 2: Prototype Pioneer 2DX with color markings

The experiments took place in a simulated 12 by 8 meter environment with
six robots and two sets of sources and sinks. Figure 3 shows a graphical rendering
of the simulated environment in which the experiments took place, with the
circuits indicated by dashed arrows and the sources and sinks labeled.

The sources and sinks were simulated laser bar-codes made from highly
reflective material and recognizable by the laser range finder. We did not require
actual objects to be carried. A proximity of less than 1 meter to a source or sink
was interpreted as a delivery or a pick-up. The relatively high number of robots
and a relatively low number of sources and sinks, or task classes, emphasizes the
fact that the dominant factor in the complexity of multi-robot task allocation
of spatially classifiable tasks is the number of robots, not the number of tasks.

5.3 Validating the TAVC Model

The goal of our validation experiments was two-fold: 1) to show both that
the allocations produced by the TAVC algorithm satisfied the predictions of the
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Figure 3: The simulation environment, with circuits Indicated

TAVC model and 2) that the group’s performance improved on the performance
of hand-coded solutions. Toward that end, we designed three experiments:

1. Base Distribution: The goal of this experiment was to demonstrate
that the TAVC algorithm distributed six robots over two tasks of different
value in an optimal way according to the TAVC model.

2. Filling a Vacancy: This experiment was designed to demonstrate that
the TAVC algorithm could recover from a change in the optimal allo-
cation by filling a vacancy. We created a vacancy by removing one of
the robots occupying a high-value service slot. According to the TAVC
model, this vacancy should be filled by one of the robots servicing a low-
value service-slot in order to retain an optimal allocation. By retaining
optimality, the TAVC algorithm would demonstrate that it can improve on
the performance of hand-coded solutions. The TAVC algorithm is a gen-
eral algorithm for retaining optimality, while hand-coded solutions must
be specialized to each problem based on a model of the group dynamics.
We argued in Section 3.2 that high-quality models of group dynamics are
difficult to construct.

3. Breakdown Without Vacancy: This experiment was a control exper-
iment showing that, in accordance with the TAVC model, the removal of
a robot servicing a low-value service slot did not lead to a change in the
allocation of the remaining robots.

Together, these three experiments demonstrate that the TAVC algorithm
establishes and maintains optimal allocations as defined by the TAVC model.
To show that the performance improvement in our experiments are due to the
TAVC algorithm, we also ran the three control experiments using robots that
randomly chose between the available tasks. To show how the vacancy chain
algorithm outperforms hand-coded MRTA algorithms, we ran an experiment
where the assumed optimal allocations for the initial setup was hand-coded in
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the robot controllers. We emphasize that in general it is not possible to reliably
identify this allocation and that this is the initial motivation for this work.

Reward Function In order to demonstrate the emergence of a vacancy chain
structure, we designed a set of rewards that would promote the allocations pre-
dicted by the TAVC model. We call the circuit with the highest related reward
the high-value circuit and, correspondingly, the circuit with the lowest related
reward the low-value circuit. Specifically, in order to produce an initial alloca-
tion where three robots serviced one circuit and three robots serviced the other,
it was necessary that it was less attractive to be one of four robots servicing the
high-value circuit than to be one of three servicing the low-value circuit. This
constraint on the reward function is presented formally in Equation 10.

∀(x, y).rx,4 < ry,3 (10)

In order for a vacancy in the high-value circuit to be filled, it must be more
attractive to be the third robot in that circuit than to be the third robot in the
low-value circuit. This is expressed formally in Equation 11, where p denotes
the preferred circuit.

∀(x 6= p).rx,3 < rp,3 (11)

We empirically estimated the relevant average traversal times. To satisfy
the constraints given these times, we chose the circuit values in Equation 8 to
be w1 = 2200 and w2 = 2000. We emphasize that the robots do not keep any
information about the task values and that the optimal allocation emerges as
each robot’s utility estimates converge as a result of individual experience only.
The fact that the robots are oblivious to task values also allows new allocations
to emerge when external factors such as the task values or the group size change.

5.4 Handling Heterogeneity

Having validated the TAVC model and task allocation algorithm, we extended
the algorithm to cover heterogeneous groups of robots. This was done by in-
troducing a softmax action selection function rather than the ε-greedy function
used for the validation experiments.

We had two aims for the heterogeneous robot experiment. First, to test
whether the modified TAVC algorithm would produce the allocation predicted
to be optimal by the TAVC model, where the three fast robots serviced the high-
value circuit and the three slow robots serviced the low-value circuit. Second,
to demonstrate that this allocation improved the performance of the system to
a level significantly above the performance level of a group where tasks were
allocated randomly.

The robots were divided into two groups in order to make them heteroge-
neous. The first group was made to operate at a default speed of 300 mm/sec.
The second group had a default speed of 200 mm/sec. The speeds were chosen
to be equidistant from the speed used in the validation experiments in order to
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preserve the distribution where three robots served the high-value circuit and
three robots serving the low-value circuit.

Reward Functions The temperature parameter τ was set empirically to
0.005. With these values the experimentation rate was significant without being
overwhelming. Because we wanted the system to remain adaptive to changes in
the environment we did not decrease ε or τ over time, as is common.

6 Results

6.1 Validating the TAVC Model

We performed the three main experiments defined in Section 5.3, as well as
a number of supporting experiments. The resulting data are presented and
analyzed below. Our student-t tests for statistical significance are all done with
respect to a 90% confidence level. For each experiment we defined a convergence
period and a stable period according to the stability of the system performance.

Base Distribution This experiment used six robots. It consisted of 20 10-
hour trials, each averaging 3000 traversals in total or 500 traversals per robot.
The convergence period was 2.5 hours.

To evaluate performance, we consider the last target visited by each robot.
This gives seven possible system states. We refer to each state using the notation
h : l, where h is the number of robots whose last target was on the high-value
circuit. Correspondingly, l is the number of robots whose last target was on the
low-value circuit. The rows labeled TAV C in Table 1 show the mean, µ̂, and
standard deviation, s, of the time the system spent in each of the states. The
values are percentages of the total stable period. The rows labeled R describe
the same values for a set of 20 trials using a group of robots that randomly
chose between tasks.

State 0:6 1:5 2:4 3:3 4:2 5:1 6:1

TAVC µ̂ 0.1 2.7 19.0 41.8 29.3 6.6 0.5
s 0.3 1.9 7.7 6.6 9.0 3.2 0.5

R µ̂ 2.0 7.2 22.6 34.5 24.7 8.2 0.7
s 0.6 2.9 3.4 3.1 3.3 3.1 0.4

T 1.6 9.4 23.4 31.2 23.4 9.4 1.6

Table 1: State-time distributions for six robots

The row labeled T lists the number of different ways to choose a sample of
size n from a population of m, as percentage of all possible samples, according
to Equation 12. It is worth noticing that the time distribution produced by
random allocation is closely aligned with this theoretical estimate, though the
differences are statistically significant.
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T =
m!

n!(m − n!)2m
(12)

The two time distributions given in Table 1 are presented as histograms in
Figure 4 with the standard deviation indicated by the error bars for each state.
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Figure 4: The state-time distributions of six randomly allocated robots and six
TAVC-controlled robots

Over 20 experiments, the difference in time spent in state 3 : 3 is statistically
significant. The time the TAVC-controlled group spent in state 3 : 3 is also
statistically higher than the time spent in any of the other states. This confirms
that the group’s action-selection policies have converged to promote the state
defined as optimal by the TAVC model, given the estimated task-processing
times.

Figure 5 presents the average performance of a group of robots controlled by
the vacancy chain algorithm over both the convergence period and the stable
period. This group’s performance is indicated by the thick, solid line. The
average performance of random allocation is indicated by the dashed line. The
performance is calculated as the sum of the delivery frequencies for each circuit
weighted by the value of the task.

The performance data show that a group of robots controlled by the TAVC
algorithm performs significantly higher than six randomly allocated robots. To-
gether, the time distribution data and the performance data show that the
adaptive controllers improve the group’s performance by adopting a dedicated
service structure that conforms to the predictions of the TAVC model.

Filling a Vacancy This experiment used five robots. We removed randomly
one of the three robots that were servicing the high-value circuit at the end of
the previous experiment, thus creating a vacancy on that circuit according to the
TAVC model. The experiment consisted of 20 10-hour trials. The convergence
period was 2.5 hours.

The converged TAVC algorithm kept the system in state 3 : 2 for a signifi-
cantly larger amount of time than a group of five randomly allocated robots. The
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Figure 5: The performance of TAVC and random allocation for six robots

State 0:5 1:4 2:3 3:2 4:1 5:0

TAVC µ̂ 0.8 7.8 31.1 40.7 17.7 1.8
s 1.1 5.1 6.3 5.3 5.9 1.6

R µ̂ 2.6 12.6 32.4 34.8 15.5 2.1
s 0.9 2.2 4.0 2.3 3.7 0.4

C 3.1 15.6 31.3 31.3 15.6 3.1

Table 2: State-time distributions of five robots after a breakdown created a
vacancy on the high-value circuit
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Figure 6: The state-time distributions of five randomly allocated and five TAVC-
controlled robots after a breakdown created a vacancy on the high-value circuit
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time distributions are given in Table 2 and a graphical presentation if provided
inn Figure 6. This showed that the group had adapted its structure from one
that promoted the 3 : 3 state to one that promoted the 3 : 2 state. The change
demonstrated that a robot from the low-value circuit had filled the vacancy we
had created in the high-value circuit.

The performance data presented in Figure 7 show that the removal of a
robot from the high-value circuit caused the performance to drop sharply. Af-
ter the re-convergence period, the performance rose again to a level that was
significantly higher than the performance of random allocation and also signif-
icantly higher than the mean performance, over 20 trials, of a group of robots
controlled by a hand-coded allocation algorithm optimized for six robots. The
average performance of that group is indicated by the thin solid line.
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Figure 7: The performance of TAVC, random allocation, and hand-coded control
before and after a breakdown creating a vacancy on the high-value circuit

Breakdown Without Vacancy This experiments used five robots from the
end of the first experiment. We removed randomly one robot from the low-value
circuit. According to the TAVC model, this did not create a vacancy and, hence,
the system was expected to remain in the 3 : 2 state. The experiment consisted
of 20 10-hour trials, and the convergence time was 2.5 hours.

The state-time distribution during the stable period of this experiment, pre-
sented in Table 3, was not significantly different from the distribution produced
during the second experiment presented in Section 6.1.

State 0:5 1:4 2:3 3:2 4:1 5:0

µ̂ 0.3 6.7 34.6 47.1 10.5 0.7
s 0.3 3.7 9.2 9.4 3.8 0.4

Table 3: State-time distributions after a breakdown that did not create a va-
cancy

As shown in Figure 8, performance fell significantly when the robot was re-
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moved, but remained significantly higher that the performance of five random
controllers. There was no significant difference in the performance during the
stable period of this experiment and the stable period of the second experiment
where a vacancy was created. Also, there was no significant difference in perfor-
mance between the convergence and stable periods of this, third, experiment.
This consistency in the performance reflects the fact that the group structure
remained unchanged.
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Figure 8: The performance of TAVC and random allocation before and after a
breakdown that did not create a vacancy

The result demonstrates that the TAVC algorithm produces the allocations
defined as optimal by the TAVC model, independently of which robot it is that
breaks down.

6.2 Handling Heterogeneity

We defined a convergence period of 15 hours based on the stability of the system
performance. The current allocations was identified by looking at which of the
robots visited the high-value circuit last. We used three fast and three slow
robots, yielding fifteen possible system states. We refer to each state using the
notation f : s, where f is the number of fast robots whose last target was on
the high-value circuit. Correspondingly, s is the number of slow robots whose
last target was on the high-value circuit. The columns labeled µ̂a and sa in
Table 4 show the mean and standard deviation of the time the system spent in
each of the states while running the modified TAVC algorithm. The values are
percentages of the total stable period. The columns labeled µ̂r and sr give the
mean and standard deviation of the time the system spent in each of the states
for a set of 15 trials using a group of robots that randomly chose between tasks.

The column labeled T lists the combinatorial probability of choosing a sam-
ple of size f from a population of g = 3 fast robots as well as choosing a sample
of size s from a population of h = 3 slow robots. This probability is given
in Equation 13. It is worth noticing that the time distribution produced by
random allocation is closely aligned with the theoretical estimate, though the
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f : s µ̂a sa µ̂r sr T µ̂a − µ̂r
µ̂a−µ̂r

µ̂r

0:0 0.2 0.2 1.4 0.5 1.5 -1.3 -0.88
0:1 1.5 1.2 3.4 1.7 4.7 -3.2 -0.67
0:2 2.0 2.6 5.0 1.4 4.7 -2.7 -0.58
0:3 0.5 0.7 2.0 1.1 1.5 -1.1 -0.70

1:0 2.9 1.6 3.6 1.4 4.7 -1.8 -0.38
1:1 12.1 4.9 13.5 3.3 14.1 -2.0 -0.14
1:2 14.4 6.1 14.4 2.4 14.1 0.3 0.02
1:3 4.1 2.7 4.0 1.4 4.7 -0.6 -0.13

2:0 7.0 5.0 5.1 1.2 4.7 2.3 0.48
2:1 19.4 7.4 15.7 2.3 14.1 5.30 0.37
2:2 18.5 5.0 14.7 3.0 14.1 4.4 0.3
2:3 5.7 3.6 4.4 2.4 4.7 1.0 0.20

3:0 2.7 4.1 1.7 0.6 1.5 1.2 0.78
3:1 5.2 4.6 5.2 1.6 4.7 0.5 0.10
3:2 3.3 2.6 4.2 1.2 4.7 -1.4 -0.29
3:3 0.7 0.7 1.5 0.8 1.5 -0.9 -0.56

Table 4: State-Time Dist. for Heterogeneous Robots

differences are statistically significant.

T =
100g!h!

f !(g − f)!s!(h − s)!2g2h
(13)

The difference between the state-time distribution produced by the mod-
ified TAVC algorithm and the distribution produced by random allocation is
presented in the column labeled µ̂a − µ̂r. This difference is presented as a per-
centage of the mean times from the random distribution, µ̂r, for each state in
the last column, labeled µ̂a−µ̂r

µ̂r
. The difference between the distributions pro-

duced by the adaptive controllers and the random controllers, i.e., the last two
columns, are also presented graphically by the histograms in Figure 9.
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Figure 9: Difference in Distributions

Over these 15 experiments, the increase in time spent in state 0 : 3 is statis-
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tically significant. In Figure 9 b) the optimal state, 0 : 3, stands out as the state
with the highest relative increase in time. This confirms that the group’s set
of Q-tables have converged to promote the state defined as optimal according
to the TAVC model. The performance data also show that the performance of
a group of robots controlled by the TAVC algorithm, 0.081 of target value per
10 seconds, is significantly higher than the performance of random allocation,
0.078 of target value per 10 seconds. Together, the state-time distribution data
and the performance data show that the modified TAVC algorithm improve the
group’s performance by adopting a dedicated service structure that conforms to
the predictions of the TAVC model. The learned Q-tables show that, as pre-
dicted, the fast robots, on average, have higher estimated utilities for high-value
tasks and higher average differences between the estimated utilities of high- and
low-value tasks.

7 Conclusions

Our experiments showed that the TAVC algorithm is an efficient and robust
task allocation algorithm that is sensitive to differences in individual agent per-
formance. The fact that the TAVC algorithm needs only a minimal amount of
information about any particular problem domain makes it potentially applica-
ble to a large class of problems. We demonstrated that in spite of the difficulties
related to modeling group dynamics and the general complexity of scheduling, it
is possible, under certain restrictions, to use the interference sensitive TAVC al-
gorithm to improve on random allocation and on hand-coded solutions. It would
have been informative to compare the performance of the TAVC algorithm to
other known ML-based algorithms such as the progress estimation-based algo-
rithm used by the L-ALLIANCE system [28] or a more general algorithm based
on, e.g., Markov games [21]. Such algorithms may or may not outperform the
TAVC algorithm. However, the fundamental difference between such solution
and the TAVC algorithm is that the TAVC algorithm works without any ex-
plicit communication, while other algorithms imply communication overheads.
For example, in L-ALLIANCE, each robot explicitly estimates the progress of
other robots, and for Markov games, the global state has to be communicated
in order to satisfy the Markov property.

Our work on the TAVC algorithm has brought up several issues that do not
relate directly to the experimental results. Below we discuss the most important
of those in some detail.

7.1 Applicability

The inspiration for the vacancy chain algorithm and the experimental results
presented here are all taken from the multi-robot domain. As a general schedul-
ing algorithm it is interesting to evaluate the applicability of the vacancy chain
algorithm outside that domain. All domains where cooperation and/or com-
petition provide significant effects from group dynamics are possible candidate
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problems for the vacancy chain algorithm. One example is network load min-
imization for distributed cooperating processes. In this domain, different dis-
tributions, or allocations, imply different communication loads. A group of mi-
grating processes, using the TAVC algorithm, could, in this domain, converge
on distributions that would minimize the network load.

In general, in order to optimize an allocation problem using the TAVC al-
gorithm, the jobs must be spatially classifiable, i.e., the effects of interaction
must be restricted to work within classes of jobs. Also, the machines must be
able to choose between the jobs, and the quality of each job solved must also
be available to each machine to provide feedback to the local utility estimates.

7.2 Optimality and Stability

A group of non-communicating, adaptive, greedy robots can be seen as partici-
pants in a multi-player game and as such, the group behavior can be analyzed
using game theory [26]. To converge to a stable solution, the TAVC algorithm
depends on finding allocations where no single robot can benefit from unilater-
ally changing tasks. In game theory, such allocations are called Nash equilibria.
Another important result from game theory is that some problems have subopti-
mal Nash equilibria, and some problems do not have Nash equilibria, unless we
consider mixed strategies. Mixed strategies are not practical as we have placed a
limiting factor on switching between classes of tasks in our definition of spatially
classifiable tasks in Section 2.1. Problems with suboptimal Nash equilibria, as
discussed below, would lead to suboptimal allocations. On problems without
Nash equilibria, the TAVC algorithm would not converge.

Optimality Consider two robots, m1 and m2, and two task classes, k1 and
k2, with identical values. Assuming identical traversal times and identical start
and finishing times, the interaction function defined in Equation 14 will lead to
convergence on a suboptimal allocation.

gi(A) =















3 if A = [k1, k1]
2 if only mi serves k1

5 if only mi serves k2

4 if A = [k2, k2]

(14)

This interaction function assumes that some allocations produce synergistic
effects. One example of a synergistic effect is when the robots need to contin-
uously repair a degrading path, e.g., by removing obstacles that appear on a
regular basis. In this case, the average traversal time for two robots can be
higher than for one robot.

The average processing time matrix corresponding to the interaction func-
tion presented in Equation 14 is presented in Table 5. This matrix shows the
expected average processing time, g1(A)/g2(A) for m1 and m2 servicing task
classes k1 and k2.

The optimal allocation, with the minimal processing times for the interaction
functions given above, is [k1, k1], with the minimal total average processing time
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m2

k1 k2

m1 k1 3/3 5/2
k2 2/5 4/4

Table 5: Processing time matrix leading to sub-optimal allocation

4. The individual reward, due to the lower processing time, for a robot when
unilaterally changing to task k2 or defecting will likely be reflected in both
the robots’ task utility estimates. With an exploration rate, ε, below 0.5, the
majority of the exploratory changes will, on average, be unilateral. This is
likely to lead to one of the robots eventually changing tasks. In game theory,
a problem with this structure is called a prisoner’s dilemma, and a unilateral
change away from an optimal solution for individual gain is called a defection.
The defection of one robot will increase the remaining robot’s processing time
on k1 task and eventually force it to defect as well. Intuitively, k2 tasks will
look more attractive due to the lower repair load, but turns out to be worse due
to high levels of interference, e.g., due to less available space.

An exploration rate of less than 0.5 will inhibit the robots from returning
to the [k1, k1] allocation, as most exploratory changes are unilaterally and will
yield a reward lower than the one for the [k2, k2] allocation.

Instability It is possible, with heterogeneous robots, to construct processing
time matrices that imply an ever-changing allocation. In game theory these are
games without Nash equilibria. One such processing time matrix is given in
Table 6.

m2

k1 k2

m1 k1 2/2 4/1
k2 4/1 2/2

Table 6: Unstable processing time matrix

With the job processing time matrix presented in Table 6, there will always
be an incentive for m1 to change in order to be working alone on a task. For
m2, on the other hand, it will always be advantageous to change in order to
work on the same task as m1. This will leave the system in a constant state of
change, not settling on any of the optimal allocations.

7.3 Commitment vs Opportunism

Matarić, Sukhatme and Østergaard [25] have empirically studied the role of
commitment and opportunism in task allocation, defining a parameter space
over which different degrees of these are preferable. The exploration rate, ε,
and learning rate, α, together with the reward function, decide how easily our
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robots switch between tasks. By adjusting these parameters, a wide spectrum
of commitment levels is available.

8 Future Work

The prioritized transportation problem has a very restricted interaction function
which reduces the scheduling complexity. We hope to explore problems with
more complex interaction functions in order to assess the general applicability
of the vacancy chain algorithm.

Vacancy chain distribution only partially describes the distribution mecha-
nism used to distribute shells among hermit crabs. It is also common for crabs
to fight over shells [8]. Inspired by such negotiated resource exchanges, it might
be possible to produce algorithms that go further in allocating high resources
to high quality consumers.
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spatio-temporal organization in groups of robots. In Proceedings of the
2002 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS’02), pages 1044–1049, Lausanne, Switzerland, September 30 -
October 4 2002. IEEE Press.

[10] Torbjørn S. Dahl, Maja J. Matarić, and Gaurav S. Sukhatme. Multi-robot
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robot coordination. IEEE Transactions on Robotics and Automation,
18(5):758–768, October 2002.

[12] Brian P. Gerkey and Maja J. Matarić. A formal analysis and taxonomy of
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