User Intent Communication in Robot-Assisted Shopping for the Blind

Vladimir Kulyukin1
Chaitanya Gharpure1
Daniel Coster2

\textit{Computer Science Assistive Technology Laboratory}2
\textit{Department of Computer Science}
\textit{Utah State University}
\textit{Department of Mathematics and Statistics}2
\textit{Utah State University}
Introduction

- We have been working on independent shopping solutions for the visually impaired.
- We have built RoboCart, a robot shopping assistant for the blind.
- RoboCart has been field-tested in a series of longitudinal shopping experiments with visually impaired participants at Lee’s MarketPlace, a supermarket in Logan, UT.
- This presentation will focus on how visually impaired shoppers can communicate their intent to RoboCart through product selection.
Introduction

- We have been working on independent shopping solutions for the visually impaired.
- We have built RoboCart, a robot shopping assistant for the blind.
- RoboCart has been field-tested in a series of longitudinal shopping experiments with visually impaired participants at Lee’s MarketPlace, a supermarket in Logan, UT.
- This presentation will focus on how visually impaired shoppers can communicate their intent to RoboCart through product selection.
Introduction

- We have been working on independent shopping solutions for the visually impaired.
- We have built RoboCart, a robot shopping assistant for the blind.
- RoboCart has been field-tested in a series of longitudinal shopping experiments with visually impaired participants at Lee’s MarketPlace, a supermarket in Logan, UT.
- This presentation will focus on how visually impaired shoppers can communicate their intent to RoboCart through product selection.
Introduction

- We have been working on independent shopping solutions for the visually impaired.
- We have built RoboCart, a robot shopping assistant for the blind.
- RoboCart has been field-tested in a series of longitudinal shopping experiments with visually impaired participants at Lee’s MarketPlace, a supermarket in Logan, UT.
- This presentation will focus on how visually impaired shoppers can communicate their intent to RoboCart through product selection.
Outline

- Background on RobotCart.
 - Shopping task analysis.
 - Blind communication modalities in assisted shopping.
 - Research hypotheses.
 - Experiments with 5 blind and 5 blindfolded participants.
 - Statistical inferences.
 - Conclusions.
Outline

- Background on RobotCart.
- Shopping task analysis.
 - Blind communication modalities in assisted shopping.
 - Research hypotheses.
 - Experiments with 5 blind and 5 blindfolded participants.
 - Statistical inferences.
- Conclusions.
Outline

- Background on RobotCart.
- Shopping task analysis.
- Blind communication modalities in assisted shopping.
 - Research hypotheses.
 - Experiments with 5 blind and 5 blindfolded participants.
 - Statistical inferences.
- Conclusions.
Outline

- Background on RobotCart.
- Shopping task analysis.
- Blind communication modalities in assisted shopping.
- Research hypotheses.
 - Experiments with 5 blind and 5 blindfolded participants.
 - Statistical inferences.
 - Conclusions.
Outline

- Background on RobotCart.
- Shopping task analysis.
- Blind communication modalities in assisted shopping.
- Research hypotheses.
- Experiments with 5 blind and 5 blindfolded participants.
 - Statistical inferences.
 - Conclusions.
Outline

- Background on RobotCart.
- Shopping task analysis.
- Blind communication modalities in assisted shopping.
- Research hypotheses.
- Experiments with 5 blind and 5 blindfolded participants.
- Statistical inferences.
- Conclusions.
Outline

- Background on RobotCart.
- Shopping task analysis.
- Blind communication modalities in assisted shopping.
- Research hypotheses.
- Experiments with 5 blind and 5 blindfolded participants.
- Statistical inferences.
- Conclusions.
RoboCart Background: Base

Modified Pioneer 2DX Base.
RoboCart Background: RFID Strips

RFID Strips.
Placement of RFID Strips.
RoboCart Background: HRI

HRI: Characters In, Synthetic Speech Out.
RoboCart Background: Product Search

Modified Barcode Reader.
Shopping Task Analysis

1. Select a product *(Shopper)*.
2. Navigate to the shelf *(Robot)*.
3. Retrieve the product from the shelf *(Shopper & Robot)*.
4. Put the product into the cart *(Shopper & Robot)*.
5. Repeat steps 1-4 as necessary.
6. Navigate to a cash register *(Robot)*.
7. Unload and Pay *(Shopper)*.
8. Navigate to the store exit *(Robot)*.
Blind Communication Modalities

1. **Browsing**: Key events in, speech out.
2. **Speech**: Speech in, speech out.
3. **Typing**: Characters in, speech out.
Hypothesis 1: Blind participants perform significantly more slowly than sighted, blindfolded participants.

Hypothesis 2: Browsing is significantly slower than typing.

Hypothesis 3: Browsing is significantly slower than speech.

Hypothesis 4: Typing and speech are significantly different.
Product Selection Algorithm

1. Hierarchical product arrangement.
2. Automatic string completion.
3. Continuous background search.
4. Seamless switching from typing to browsing.
Experiments

1. Three independent variables: MODALITY, CONDITION (BLIND VS. SIGHTED), PARTICIPANT.
2. One dependent variable: TIME.
3. Two basic questions:
 - To what extent does TIME depend on MODALITY?
 - To what extent does TIME depend on CONDITION?
Experiments

1. **Participants**: 5 blind, 5 sighted, all computer literate.
2. **Age Range**: 17 to 32.
4. **Settings**: Laboratory.
5. **Procedure**:
 - 20 minute tutorial;
 - Session 1: Selection of 10 random products with 3 modalities;
 - Session 2: Selection of 10 random products with typing and speech.
 - Administration of NASA-TLX to each participant.
1. There are significant differences among the 3 modalities.
2. There are significant differences among the 2 conditions.
3. There are significant differences among the 10 participants.
1. There are significant differences among the 3 modalities.
2. The differences can be due to two possible interactions: 1) MODALITY/CONDITION; 2) MODALITY/PARTICIPANT.
3. Both interactions are not significant.
4. **Plausible Inference**: TIME appears to depend on the inherent nature of MODALITY and does not appear to depend either on CONDITION or PARTICIPANT.
Statistical Inferences: Probing Deeper

1. Blind participant 5 is an outlier.
2. If blind participant 5 is dropped, the differences within CONDITION and PARTICIPANT become insignificant.
1. Blind took longer than sighted to complete product selection tasks.

2. But: The differences are not significant.
Over repeated trials participants improved with typing significantly more than they improved with speech.

This improvement could be due to some learning effect or to the inherent complexity of a particular random product set.

The magnitudes of improvement over repeated trials were significant and in favor of typing.
NASA-TLX

<table>
<thead>
<tr>
<th>Dimension/Modality</th>
<th>Browsing</th>
<th>Typing</th>
<th>Speech</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mental demand</td>
<td>45.6</td>
<td>35.9</td>
<td>13.4</td>
</tr>
<tr>
<td>Frustration</td>
<td>47.8</td>
<td>1.8</td>
<td>34</td>
</tr>
<tr>
<td>Overall Workload</td>
<td>12.88</td>
<td>8.33</td>
<td>7</td>
</tr>
</tbody>
</table>
Conclusions

1. Typing and speech have the same workload: 8.33 and 7, respectively.
2. Fundamental problem with typing: spelling errors.
4. Typing preserves discretion in public places.
5. **Key question:** What will be give us robust product selection faster: reduction of the typing mental demand with continuous background spellchecking or reduction of the speech frustration level with user training?
6. **Our conjecture:** Spellchecking :-).
Acknowledgments

1. NEI/NIH 1 R41 EY017516-01A1.
2. NSF IIS-0346880.